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1. Key Observations and Conclusions 
 
1.1 Historical Concerns About the Statistical Methodology 
 

In Chapter 9, the EPA has presented its assessment of the epidemiologic literature 

relating monitored PM concentrations to health effects. Although the Agency has expressed 

concern about the uncertainties associated with the extensive body of epidemiologic evidence 

of associations between health effects and PM (see Section 8.4), it concludes that there is a 

convincing case for a causative association even though as new information became available 

and new modeling approaches were tried, inconsistencies in PM effect estimates continued to 

accumulate. 

 The CD examines a number of statistical issues relevant to connections between 

ambient PM variations and corresponding variations in health and mortality indicators. In 

Chapters 8 and 9, the EPA has carefully discussed the assessment of confounding by co-

pollutants and adjustments for meteorological variables, statistical issues in the use of multi-

pollutant models, adjustments for meteorological variables, the question of lags, 

measurement error, concentration-response relationships for ambient PM, and the question of 
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heterogeneity of particulate matter effects estimates. The CD often contains important 

caveats regarding modeling issues since effect estimates will be strongly dependent on 

modeling. Unfortunately, many of the caveats mentioned are put aside by the Agency in 

drawing its conclusions in both Chapters 8 and 9. 

Prior to writing the PM CD, the EPA had expressed concern about the strengths and 

limitations of the extensive body of epidemiologic evidence of associations between health 

effects and air pollutants. In its Air Quality Criteria for Carbon Monoxide (EPA, 2000), the 

EPA noted on pages 6-4 to 6-6 that there were important statistical issues that needed to be 

considered in critically assessing the available epidemiologic database for CO and other air 

pollutants. Many of these concerns, as noted in the Carbon Monoxide CD, were especially 

pertinent to daily time-series studies, which were the majority of the epidemiologic studies 

available for ambient CO and which form a large part of the epidemiologic database for other 

criteria air pollutants as well. The authors of the CO CD noted that statistical uncertainties, 

coupled with existing biological and epidemiologic uncertainties, could pose difficulties in 

judging the quantitative accuracy of pollutant effect estimates themselves and, perhaps in 

some cases, their qualitative validity (see page 6-4). On pages 6-4 through 6-6, the EPA noted 

5 key statistical issues in the Carbon Monoxide CD. 

(1) Sensitivity of effects estimates to different choices of statistical models/model 
specifications. Effects estimates for CO and other air pollutants can vary, 
depending on different choices of statistical models or specifications for 
important model parameters. For example, as the following sections show, effects 
estimates for CO or other pollutants at times differ with different choices of 
metric for the same pollutant, with different choices of modeled covariates 
(independent variables), with different lag or moving-average structures for air 
pollutants and covariates, with different choices of time spans in nonparametric 
smoothing procedures, and with different choices of adjustment for 
autocorrelation and overdispersion in the data. Also, in parametric models, 
different choices of functional forms of modeled concentration-response 
relationships can lead to different interpretations of results. Furthermore, effects 
estimates for CO and other pollutants in single-pollutant models frequently differ 
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from those derived from multi-pollutant models. It is increasingly clear that 
ambient air pollution health effects may arise from exposure to multiple 
pollutants, and that single-pollutant models do not necessarily describe 
adequately the effects of ambient CO and other pollutants. Recent increased 
attention to multi-pollutant models is, therefore, highly appropriate. Even so, time 
series of ambient CO levels often are highly correlated with time series levels of 
other pollutants, such as PM. Thus, effects estimates for different pollutants 
remain subject to confounding in multi-pollutant models. Scientific consensus as 
to optimal modeling strategies for time series air pollution studies has not yet 
been achieved. Application of nonparametric techniques, which generate 
exposure-response surfaces for more than one pollutant at a time, may well prove 
useful in future analyses. Nevertheless, however, much progress has been made 
in evaluating issues related to uncertainties associated with model selection and 
alternative specifications for important model parameters, as illustrated by U.S. 
EPA (1996) evaluations of time-series analyses of ambient PM exposure effects. 
As mentioned above, small health effects estimates generally have been observed 
for ambient air pollutants, and small effects would be expected on biological and 
epidemiologic grounds. At the same time, because the effects estimates are small, 
they can be sensitive to different model specifications. These can calculate to 
substantial differences in estimated numbers of cases of illness or mortality 
attributable to ambient air pollution exposure. On balance, there remains 
uncertainty as to the proper choice of effects estimates to employ in estimating 
risks of exposure to ambient CO and other air pollutants in the human population. 
 
(2) Measurement error in ambient CO metrics. In this document, Appendix 3-A 
and Sections 4.2.2 and 4.2.3 indicate that there is substantial spatial variability in 
ambient CO concentrations, and that fixed-site CO measurements may not 
adequately index widely varying actual population exposures to ambient CO. 
Current evidence also suggests that ambient CO is more spatially heterogeneous 
than other criteria pollutants assessed in epidemiologic studies to date (e.g., 
PM2.5, PM10, ozone [O3]). In many instances, misclassification of exposure leads 
to downward bias in statistical effects estimates. Thus, effects estimates for 
ambient CO may be biased downward in available epidemiologic studies, and 
downward bias may be stronger for estimates of CO effects than for estimates of 
other pollutants' effects. However, this has not been confirmed. Further research 
is needed to quantify the degree to which fixed-site measurements of ambient CO 
and other pollutants overestimate or underestimate actual population exposures to 
these pollutants. This research will require characterization of relationships 
between fixed-site CO measurements and personal CO exposures over time. It 
will also require accurate apportionment of total CO exposure into CO exposures 
of ambient and nonambient origin. Further research also is needed to characterize 
influences of measurement error on estimates of air pollution effects in statistical 
models for CO and other ambient pollutants. 
 
(3) Potential confounding of air pollution and weather effects. Meteorologic 
events and ambient air pollutant concentrations may be highly correlated on short 
time scales, even when longer time trends have been filtered. It is essential to 
model joint effects of air pollution and weather with great care. Such joint 
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modeling has been conducted only rarely in time series studies of ambient air 
pollution. To date, simple additive or proportional assumptions generally have 
been made in modeling health effects of air pollutants and weather. These 
assumptions are not necessarily fully adequate, largely because health effects 
estimates for air pollutants are small and subject to large proportional differences 
with different model specifications. One example of recent efforts to model better 
possible complex relationships involving combinations of meteorological factors 
(e.g., temperature, barometric pressure, etc.) and to assess their impacts on air 
pollutant health effects estimates was the modeling of “synoptic weather pattern” 
effects in conjunction with ambient PM exposures (as described in U.S. EPA 
1996). Application of nonparametric techniques to jointly model CO and 
meteorologic effects also may prove useful in future CO analyses. 
 
(4) Insufficient reporting of statistical uncertainty. In available studies, statistical 
uncertainty generally has been assessed rather superficially, without formal 
consideration of the model tuning performed by the investigators. For example, 
lag times and averaging times for air pollutant metrics are sometimes selected to 
maximize statistical effects estimates for pollutants. This may, at times, lead to 
inflated reported effects estimates and, perhaps, unduly narrow confidence 
intervals for these estimates. In future studies, uncertainty arising from model 
tuning should be assessed more carefully. In this effort, resampling or simulation 
procedures, which would recreate the entire model estimation process, should be 
considered as a means for evaluating the accuracy and robustness of reported 
effects estimates. 
 
(5) Health effects averaged over extended time periods. None of the available 
time series studies of ambient CO are capable of assessing the incremental effect 
of pollutants over extended time periods. For example, current models cannot 
confidently predict whether reduction in pollution will decrease monthly rates of 
hospital admissions or mortality, even if they imply a reduction of admissions on 
days with low pollution. This public-health-related issue cannot be addressed by 
daily time series analysis, using only admission or mortality counts. In future 
studies, investigators also could consider time averaged health effects over, say, 1 
or 3 mo, in relation to pollution exposure metrics for the corresponding periods. 
Consideration of extended time-averaged health effects would tend to allow for 
detection of more chronic impacts beyond any short-term “harvesting” that might 
be observed in daily analyses. (In time series studies of air pollution, harvesting is 
a short-term elevation in the frequency of a health outcome during or just after a 
short period of elevated ambient air pollution, followed quickly by a short-term 
reduction in frequency of the same outcome below baseline frequency, then by a 
return to baseline. It has been argued that presence of harvesting would suggest 
that elevated air pollution exposure hastens occurrence of the health outcome by 
only a short time, but brings about little or no net increase in occurrence of the 
outcome. It also has been argued that absence of harvesting would suggest that, 
without the elevated air pollution exposure, the outcome might have been delayed 
for a long time or might not have occurred at all.) 
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1.2 Current Concerns About the Statistical Methodology 

A key question comes to mind when reviewing the statistical concerns described 

above: Do the concerns described in the CO CD, taken individually or collectively, affect the 

time-series epidemiologic analyses purporting to show associations between health effects 

and PM? EPA believes that the pattern of epidemiologic time-series results reinforces the 

conclusions of the previous PM CD that there is a strong relationship between health effects 

and PM 24-h average concentrations. On page 9-45, the EPA concludes that the 

epidemiological evidence continues to support likely causal associations between PM2.5 and 

PM10 and both mortality and morbidity from cardiovascular and respiratory diseases, based 

on an assessment of strength, robustness, and consistency in results. In addition, the Agency 

concludes that epidemiologic studies suggest no strong evidence for a threshold in PM-

mortality relationships. However, before one agrees with the Agency, it is important to 

review the statistical concerns described by the EPA in Chapter 8 and assess whether the 

pattern of inconsistent epidemiological results contradicts EPA’s decision not to provide 

appropriate weighting to the concerns in making its final judgment on the existing evidence. 

Of interest, when reviewing Chapter 9, one discovers that the words “uncertainty” and 

“uncertainties” are used only 5 times in the section that focuses on the evidence for linking 

epidemiological results with human health effects. The following are the instances: 

1. While this synthesis focuses on what has been learned since the last 
PM NAAQS review, it also highlights important remaining 
uncertainties that remain and recognizes the value of continuing PM 
research efforts in a number of key areas. Although detailed 
delineation of research needs is beyond the scope of this document, 
such recommendations are to be discussed in later PM research needs 
documents and/or research plans to be prepared by EPA. (page 9-1). 

 
2. Still fewer studies have used PM10-2.5  measurements. The effect 

estimates are almost all positive and similar in magnitude to those 

 
5 



reported for PM2.5 and PM10, but few reach statistical significance. 
Measurement error likely contributes to greater uncertainty, reflected 
by wider confidence intervals, in effect estimates for PM10-2.5 

than for 
PM2.5 

and PM10. (page 9-26) 
 

3. Whereas the resulting analysis using all the daily data showed clearly 
statistically significant positive PM-mortality associations, the results 
for the analyses using 1-in-6 day data sets were quite inconsistent. 
Hence, the use of air quality data with many missing days adds 
uncertainty to results for PM-health outcome associations. (page 9-38 
– 9-39) 

 
4. Much progress has been made in sorting out contributions of ambient 

PM10 and its components to observed health effects relative to other co-
pollutants. Despite continuing uncertainties, the evidence overall 
tends to support the above conclusions that ambient PM10 and PM2.5 

are most clearly associated with mortality/morbidity effects, acting 
either alone or in combination with other covarying gaseous pollutants, 
with more limited support being available with regard to PM10-2.5. 
(page 9-44). 

 
5. Hence, although at the time of the 1996 PM AQCD, the epidemiologic 

evidence was viewed as substantiating well PM10 or PM2.5 associations 
with human mortality and morbidity, uncertainties remained with 
regard to (a) the contribution of specific PM constituents to PM 
toxicity and (b) the biological plausibility of the reported effects and/or 
the mechanisms of action underlying them. (page 9-46). 

 

Clearly, even though considerable discussion has taken place both in Chapter 8 and at 

CASAC deliberations, the authors of Chapter 9 have made the decision not to factor into its 

conclusions the large uncertainties associated with the use of the epidemiologic methodology 

and the resulting inconsistencies in PM effect estimates that continued to accumulate. 

Without a clear statement in Chapter 9 that indicates the ramifications of these serious 

deficiencies associated with the effects estimates, a selective set of data within the PM 

Criteria Document will be cited in the EPA’s Staff Paper and used in risk assessments 

without acknowledgement of the large uncertainties associated with the inputted data. 

Statistical uncertainty and risk analyses performed by the Staff Paper authors will not include 
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considerations associated with the highly uncertain risk estimates, which actually include 

values that are positive, negative, and no effect estimates. Pooled estimates will be used that 

will blur the actual uncertainty associated with the estimates. 

Many of the statistical caveats raised throughout Chapters 8 and 9 indicate a pattern 

of inconsistent results that is troubling. Examples of the growing pattern of inconsistent and 

inconclusive findings include the following: 

• Instability of PM mortality effect estimates resulting from different model 
specifications of weather effects and time trends. 

 
• Instability of PM effect estimates resulting from different selections of monitoring 

sites within cities. 
 

• Increased heterogeneity of PM effect estimates across cities. 
 

• Greater diversity of findings among studies and across study areas.  
 

• Contradictory results from mortality displacement studies. 
 

• PM effect lags that are inconsistent across cities and across studies. 
 

• Exposure-response relations that are inconsistent across cities and across studies. 
 

• Inconsistencies between short-term and long-term effect studies, such as respiratory 
effects of fine particles. 

 
• Contradictory findings among long-term studies. 

 
For example, the NMMAPS reanalysis of the 88 largest U.S. cities plays a rather 

prominent role in current considerations of the PM CD for the effects of ambient PM on 

mortality and morbidity. The reanalysis of this study in HEI (2003) reduced PM mortality 

effect estimates by a factor of two and increased their associated standard error estimates. 

The combination of decreases in effect sizes and increases in standard errors for individual-

city PM effects meant that genuine inter-city effect differences were more difficult to discern 
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statistically. The PM CD reports that even greater spatial heterogeneity appears to exist 

across newly reported study results (8-311, 9-37). 

Figure 8-1 illustrates the estimated excess risks for PM mortality (1 day lag) for the 

88 largest U.S. cities as shown in the revised NMMAPS analysis. The CD stresses in many 

places that there are more positive than negative estimates of relative risk. However, an 

interesting observation is that there are many negative estimates. The presence of so many 

negative estimates requires some explanation of the reasonableness of the estimation 

procedures used in the epidemiological studies. It is interesting to note that, except for three 

cities (Oakland, New York, and Little Rock,), all of the remaining cities have confidence 

limits that contain 0. The prevalence of negative risk estimates in the collection requires very 

careful consideration since if they are neglected, then the positive estimates should also be 

neglected. These inconsistencies are suggestive of model inadequacies, particularly in regard 

to confounders and effect modifiers. 

The claim that consistent effect estimates exist (page 9-26) is clouded by the 

incompatible comparisons in Figure 9-4. In Chapter 9, the CD summarizes results from a 

number of PM mortality studies such as the comparative display in Figure 9-4 (page 9-24). 

This figure, and others like it, is misleading because some of the plotted risk confidence 

intervals are derived from single-city studies, while each multi-city study is represented by a 

single confidence interval that conceals evident differences among cities and does not 

incorporate city-specific risk uncertainty. For example, the study with the shortest confidence 

interval is actually an artificial composite of 90 separate and highly variable model estimates.  
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Figure 8-1. Estimated excess risks for PM mortality (1 day lag) for the 88 largest U.S. 
cities as shown in the revised NMMAPS analysis. 
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Figure 9-4. Excess risk estimates for total nonaccidental, cardiovascular, and 
respiratory mortality in single-pollutant models for U.S. and Canadian studies. PM 
increments: 50 µg/m3 for PM10 and 25 µg/m3 for PM2.5 and 10-2.5. Results presented from 
time-series studies that did not use GAM or were reanalyzed using GLM. 
 

Beginning in January 2000, Drs. Switzer and Lefohn have commented on the various 

versions of the PM CD. Several of the concerns raised with the time-series analyses were 

similar to the important statistical issues that EPA believed needed to be considered in 

critically assessing the available epidemiologic database for CO and other air pollutants 

(EPA, 2000). Over the period 2000 - 2004, we have focused our attention on a number of 

statistical concerns, which are still not adequately addressed in either Chapters 8 or 9 of the 

PM CD. These concerns include the following: 

1. Confounding of weather and time trends with PM effects 
2. Heterogeneity of PM effects and effect modification 
3. Heterogeneity of exposure within study areas 
4. The relation between exposure and response 
5. Lag selection and distributed-lag models 
6. Mortality displacement 
7. Long-term PM-mortality studies 
 
In the previous drafts of Chapter 8 of the PM CD, the authors emphasized the 

“coherence” of PM health effect estimates across a number of epidemiologic studies. 
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However, as we have noted in our previous comments, in fact, it is difficult to see this 

coherence, even within the multi-city studies that the CD appropriately emphasizes. The 

latest version of Chapter 8 cites recent studies and re-analyses of earlier studies that, taken 

together, demonstrate the increasing unreliability and inconsistency of the model-based 

estimates of PM effects on mortality. Most importantly, the pattern of inconsistent results has 

apparently expanded with the accumulation of new studies and the reanalysis of earlier 

studies. Even among those analyses that do estimate health effect reductions from reduced 

PM, quantitative estimates differ by at least an order of magnitude. What is more striking are 

the inconsistencies and the sensitivity of PM effect estimates to modeling choices, including 

additivity assumptions, seasonal differences, regional grouping, spatial heterogeneity, lags 

and multiple lags, and treatment of gaseous pollutant confounders. 

The CD has appropriately emphasized multi-city studies, in particular the 90-city 

study, because a common modeling approach was used. Thus, one would anticipate that the 

heterogeneity of PM effect estimates is less attributable to disparate model selection. 

However, a multiplicity of cities does not guarantee that there are not important model 

deficiencies in the common model and the statistical methods relied upon by the CD.  

In reaching its most current conclusions concerning its assessment of epidemiologic 

evidence in its revised version of Chapter 9 of the PM Criteria Document, the EPA has 

considered information in relation to several criteria (see Page 9-21) noted at the outset of 

Section 9.2 of the CD: (1) the strength of reported associations, in terms of magnitude, 

statistical significance, and statistical power/precision of effects estimates; (2) the robustness 

of reported associations to the use of alternative model specifications, potential confounding 

by co-pollutants, and exposure misclassification related to measurement error; (3) the 
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consistency or general concordance of findings in multiple studies of adequate power, and in 

different persons, places, circumstances and times; (4) temporality, in terms of lag periods 

between exposure and observed effects; (5) the nature of concentration-response 

relationships; and (6) information from natural experiments or intervention studies as to the 

extent to which reductions in PM-related air pollution have been observed to be associated 

with improvements in health measures. 

Dr. Switzer (2004c) has carefully evaluated the epidemiologic assessment criteria 

presented in Section 9.2.2. He has excluded the final speculative topic dealing with natural 

experiments because he believes that these experiments are uncontrolled and unadjusted 

observational studies, subject to strong publication bias. His conclusions are as follows 

concerning the 5 criteria: 

Strength of reported associations.   PM effect coefficients vary substantially from 
city to city and are not consistently positive or consistently statistically significant.  
The single-city effect estimates for multi-city studies should have been examined in 
assessing reported associations. When estimates from the 90-city mortality study are 
averaged, the net effect is very small. 

 
Robustness of epidemiologic associations.  PM effect estimates are sensitive to 
modeling of weather, long-term trends and seasonality, and selection of time lags.  
The way in which weather and co-pollutants are confounded with PM has still not 
been adequately explored because covariation models have not allowed for 
interaction. The recommended further investigation of weather effects [9-34] could 
even show that remaining PM effects are substituting for heretofore unmodeled 
weather effects. 

 
Consistency of epidemiologic findings.  PM effect estimates are not consistent from 
city to city, are not consistent within cities when different monitoring sites are 
compared, and are not consistent from season to season.  Inconsistencies are 
suggestive of model inadequacies, particularly in regard to confounders and effect 
modifiers.  There is no way to anticipate the consequences of PM reduction, given the 
diverse array of epidemiologic findings. 
 
Temporality and the question of lags.  Most studies assessed in Chapter 9 did not 
examine the pattern of effect estimates as a function of time lag, nor did they check 
non-causal negative lags.  The extent of lag selection bias remains unresolved.  
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Statistical properties of PM effect estimates as a function of time lag are difficult to 
anticipate because of temporal autocorrelation of PM time series. 
 
Concentration-response.   The assumption that health effect responses are 
proportional to the ambient PM concentrations is central to many of the reported 
epidemiologic findings and conclusions. Departures from proportionality can have 
profound consequences both assessing PM health effects and for regulatory standards.  
There is a diversity of findings regarding the proportionality and the power of 
statistical tests for proportionality is weakly understood.  Pooling of response 
functions across cities to obtain linearity is not statistically justified and leads to 
regulatory dilemmas. A separate 24-hour standard is superfluous under presumed 
linearity of concentration-response.  The relation between individual-level response 
and the community-level response used in time series studies is not well understood.  
And finally, some studies suggest that acute PM mortality effects are consistent with 
mortality displacement in frail populations, an important regulatory issue not 
addressed in Chapter 9.   
 

Dr. Switzer (2004c) concludes that the available epidemiologic information does not 

meet the criteria for a convincing case for a causative association, nor does this information 

provide a basis for anticipating the effects of PM reductions. As new information became 

available and new modeling approaches were tried, inconsistencies in PM effect estimates 

continued to accumulate. Although Chapter 9 does enumerate important caveats regarding 

the role of modeling choices on PM effect estimates, many of its own caveats were put aside 

in drawing conclusions. Without a clear understanding of the reasons for inconsistent effects 

estimates, one cannot rule out the possibility that PM effect estimates are model artifacts. 

It is clear that the PM effect estimates are delicate; this is not surprising given that 

they are superimposed on much stronger effects due to, for example, concomitant weather 

variations. These widely varying, sometimes negative, PM health effect estimates are 

symptomatic of probable model shortcomings. Given the difficulty of estimating PM health 

effects, it is clear that consistent inconsistencies are demonstrated throughout the revised 

chapter. One simply cannot draw comfortable conclusions regarding the circumstances and 
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magnitudes of ambient PM health effects, or whether reported PM health effects are 

causative.   

An alternative to the cause-and-effect explanation provided in Chapter 9 is that many 

of the results cited may be mostly associated with modelling artifacts. Ultimately the CASAC 

and the EPA must answer a serious question: If the time-series data are the most important 

information available for establishing Federal PM standards, are the data good enough to use 

in the decision-making process? Based on the evidence presented in Chapters 8 and 9 in the 

PM CD, one simply cannot draw comfortable conclusions regarding the circumstances and 

magnitudes of ambient PM health effects, or whether reported PM health effects are 

causative. Thus, one might conclude that there is still too much uncertainty remaining in the 

epidemiological time-series results. In addition, many of the concerns expressed by the EPA 

in the Carbon Monoxide CD (EPA, 2000) about the strengths and limitations of the extensive 

body of epidemiologic evidence of associations between health effects and air pollutants 

have not been adequately addressed in the most current version of the PM CD. The growing 

pattern of inconsistent and inconclusive findings is troublesome and presents both scientists 

and policymakers with a very difficult decision. Simply stated, the science is just not 

substantial enough at the moment to provide the foundation upon which a clear path can be 

built leading directly from the science to the policymaking decision arena. 
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2. Heterogeneity of Exposure 
 
2.1 Introduction 
 

With the release of the August 2004 revised version of Chapter 9, when discussing 

spatial variability, there are serious inconsistencies throughout the chapter. With the 

exception of a few longitudinal panel studies, most epidemiologic studies of PM health 

effects rely on ambient community monitoring data providing 24-h average PM 

concentration measurements. The use of ambient concentration can lead to misclassification 

of individual exposures and to errors in the epidemiological analysis of pollution and health 

data, depending on the pollutant and on the mobility and lifestyles of the population studied. 

Any gradient that may exist between a fixed-site monitor and the outdoor microenvironments 

near where people live, work, and play, affects the concentration profile actually experienced 

by people as they go about their daily lives. If outdoor PM constituent concentration profiles 

are either spatially or temporally variable, it is likely that exposure misclassification errors 

could be introduced in the analysis of PM air pollution and health data. Variability in PM 

concentrations across study areas could influence epidemiologic study results. The authors of 

the CD note the importance of spatial variability on page 9-38, when they state, “Greater 

spatial variability in PM levels would be expected to increase exposure error, potentially 

affecting epidemiologic study results in those areas” (emphasis added). 

Aspects of the spatial and temporal variability of the 24-hour average PM2.5 

concentrations for 27 U.S. metropolitan statistical areas (MSAs) for the period 1999, 2000, 

and 2001 were considered in the main body of Chapter 3 (Section 3.2.5) and in Appendix 

3A. In Chapter 3, the CD points out that whereas high correlations of PM2.5 provide an 
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indication of the spatial uniformity in temporal changes in directions (i.e., concentrations at 

both sites increasing or decreasing together) across urban areas, the correlations do not 

imply uniformity in the PM2.5 concentrations themselves (page 3-46). It is important to 

note that in Chapter 3, the 90th percentile difference in concentrations (P90) and the 

coefficient of divergence (COD) were used to provide an indication of the degree of spatial 

uniformity in PM2.5 concentrations across urban areas. A COD of zero implies that both data 

sets are identical, and a COD of one indicates that the two data sets are completely different. 

Figure 3-18 (page 3-48), which is reproduced on the next page, illustrates examples of the 

varying degree of spatial variation in concentrations between pairs of sites that are highly 

correlated (i.e., r>0.9) in three MSAs in Columbia (SC), Chicago (IL), and Detroit (MI). 

Although the correlation coefficients were greater than 0.9 for all site pairs in Figure 3-18, 

there is a high degree of variation as indicated by both the P90 and the COD. Pairs of sites 

showing high correlations and CODs < 0.1 and P90’s ≤ 5 µg/m3 (as in Columbia, SC) 

indicate spatial homogeneity in both PM2.5 concentrations and in their temporal variations. 

Pairs of sites showing high correlations (r > 0.9) and CODs > 0.2 and P90’s > 10 µg/m3 (as 

in Detroit, MI) indicate spatial heterogeneity in concentrations but homogeneity in their day-

to-day changes. That is, although the absolute concentrations on a given day are different 

between site pairs, both sites tend to increase and decrease together from day to day. 

Although the three MSAs exhibited high correlations among their monitoring pairs, Chapter 

3 stresses that in many cases, correlation coefficients ranged from high to low values among 

monitoring pairs within the various MSAs. 
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Figure 3-18 in CD on Page 3-48. 
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Table 8-40 on page 8-281 illustrates statistics summarizing the spatial behavior of 

PM2.5 concentrations, based on detailed analyses presented in Appendix 3A. Figures 3A-1 – 

3A-27 (pages 3A-4 – 3A-30) in Appendix A summarize the information about the spatial and 

temporal variability of 24-hour average PM2.5 concentrations. The summary table is 

presented in this review. The mean Pearson correlation coefficient for all site pairs 

considered in a given MSA, the average of the annual mean concentrations, the range of 

annual means at the sites considered, the average 90th percentile value (P90) of the absolute 

concentration difference, and the average coefficient of divergence (COD) are shown in 

Table 8-40 for MSAs satisfying data completeness criteria used for inclusion in Appendix 

3A. Data in Table 8-40 show the ranges in the metrics (annual means) considered for all the 

MSAs included in the analyses. The CD points out that substantial concentration gradients 

exist on many days across some MSAs. The effects of outlying sites on the summary 

statistics were examined for the Atlanta, GA, Washington, DC, Seattle, WA and Los Angeles 

MSAs by removing them from the analyses. Their deletion either had no effect (as in 

Washington, DC) or a very large effect (as in Seattle, WA). In addition to outlying 

monitoring sites, located outside the main urban air shed, monitoring sites within the urban 

core can also enhance the spatial variability in MSAs, as shown for Detroit, MI. As discussed 

in Chapter 3, there are a number of factors that contribute to spatial variability in ambient 

PM2.5 concentrations in urban areas. 

The CD concludes on page 8-280 that “… concentration gradients can exist in MSAs 

whose monitoring sites are highly correlated and that use of correlation coefficients alone is 

not enough to characterize spatial variability”. Because of incomplete data capture for some  
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TABLE 8-40. SUMMARY STATISTICS SHOWING MEAN SITE-PAIR PEARSON  
CORRELATION COEFFICIENTS, ANNUAL MEAN PM2.5CONCENTRATIONS  
(µg/m3), THE RANGE IN ANNUAL MEAN CONCENTRATIONS (µg/m3), MEAN OF 90thPERCENTILE 
DIFFERENCES IN CONCENTRATIONS  
BETWEEN ALL SITE PAIRS (µg/m3), AND COEFFICIENTS OF DIVERGENCE  
(COD) FOR MSAs MEETING SELECTION CRITERIA GIVEN IN APPENDIX 3A.  

VALUE IN ( ) REFERS TO NUMBER OF SITES.  

Mean Correlation  Annual Mean 
Concentration (µg/m3)  

Range in Annual Means 
(µg/m3)  

Mean P90 

(µg/m3)  Mean COD  

Eastern U.S.       
Philadelphia, PA-NJ (5)  0.89  15.3  2.3  5.1  0.12  

Washington, DC (6)  0.84  14.6  3.4  7.1  0.17  

Washington, DC* (5)  0.85  14.6  3.4  6.1  0.17  

Norfolk, VA (5)  0.96  13.5  0.7  3.6  0.08  

Columbia, SC (4)  0.92  15.6  1.8  4.3  0.09  

Atlanta, GA (7)  0.71  20.2  4.5  10.3  0.18  

Atlanta, GA* (6)  0.78  20.6  3.5  8.5  0.15  

Birmingham, AL (5)  0.83  20.3  5.3  11.5  0.18  

Tampa, FL (4)  0.74  12.4  1.6  4.3  0.12  

Central U.S.       
Cleveland, OH (8)  0.9  17.1  6.2  8.8  0.17  

Pittsburgh, PA (11)  0.81  17.9  8.2  11.8  0.16  

Steubenville, OH-WV (5)  0.86  17.7  2.4  8.1  0.18  

Detroit, MI (10)  0.89  16.7  6.4  9  0.17  

Detroit, MI ** (9)  0.92  15.9  4.7  8.2  0.16  

Grand Rapids, MI (4)  0.96  12.7  1.2  4.6  0.13  

Milwaukee, WI (8)  0.9  13.7  1.3  4  0.12  

Chicago, IL (11)  0.89  17.6  6.1  7.4  0.14  

Gary, IN (4)  0.75  15.8  3.6  7.7  0.18  

Louisville, KY (5)  0.9  17.1  2.7  5.1  0.12  

St. Louis, MO-IL (11)  0.83  17.4  5.6  8.8  0.15  

Baton Rouge, LA (3)  0.95  14.3  0.4  2.7  0.08  

Kansas City, KS-MO (6)  0.91  12.6  2.4  4.2  0.13  

Dallas, TX (7)  0.94  12.6  2.2  4.1  0.11  

Western U.S.       
Boise, ID (4)  0.88  9.5  1.6  6.4  0.17  

Salt Lake City, UT (6)  0.91  11.3  5.0  7.9  0.21  

Seattle, WA (5)  0.62  8.9  6.1  10.8  0.3  

Seattle, WA* (4)  0.85  10.4  3.0  6.1  0.17  

Portland, OR (4)  0.83  7.7  2.8  5.3  0.19  

Los Angeles, CA*** (5)  0.61  17.9  13.9  21.4  0.28  

Los Angeles, CA (6)  0.77  21  5.4  12.2  0.18  

Riverside, CA (5)  0.89  27.5  5.0  12.3  0.17  

San Diego, CA (4)  0.79  15.8  2.4  8.7  0.17  

* outlying site removed.       
** interior site removed.       
*** Results from analysis including site in Lancaster, CA (included in L.A. MSA, but located across mountains to east of downtown LA)..  



individual monitors on a given day in a particular MSA, when large concentration 

gradients exist across that MSA, day-to-day differences in calculated area-wide 24-h 

average PM levels may not accurately reflect the day-to-day changes that would be 

obtained by the full set of monitors. On page 8-283 the CD states, “The above results 

provide clear evidence that fine particle concentrations may be less homogenous in at 

least some MSAs than has been previously assumed”. Although not all major 

metropolitan areas were included in the spatial variability analysis, there is a sufficient 

number of major population centers included in the analysis summarized in Chapter 3 to 

indicate that the assumption of spatial homogeneity across all major metropolitan cities is 

inaccurate.  

The CD notes on page 9-36 that new exposure studies indicate that fine particle 

measurements at central monitoring sites are good indicators of personal exposures to 

PM2.5 in time-series studies. This claim rests largely on correlation coefficients calculated 

in a single study that was both geographically and temporally limited. What is really 

relevant is whether or not reductions in ambient monitor-site PM would produce 

predicted reductions in community mortality. Since different PM monitoring sites within 

the same community can lead to quite different PM effect estimates, the correlations with 

exposure cited in Chapter 9 appear somewhat beside the point. Similarly, Chapter 9 

reports on page 9-36 that fine particle concentrations are well correlated between 

monitors in some cities, but the relevance of this observation is not clear. For example, 

Cook County is said to have well-correlated fine particle concentrations between monitor 

pairs but mortality effect estimates based on different monitors can be quite different. 
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In cities with multiple PM monitors, estimated unit effects of PM from time-series 

studies can vary widely (8-285), depending on which monitor or combination of monitors 

is used as the ambient PM measure; see Ito et al. (1995) and Roberts (2003). For 

example, of the twelve Chicago sites that monitored PM10 during 1987-1994, four sites 

showed consistent significant positive association with same day mortality, while the 

other eight sites showed negligible and non-significant mortality associations.   

Weak cross-correlations of ambient PM measurements between monitors in the 

same city suggest that a PM-effect analysis, based on a composite ambient time series for 

that city, is likely to be misleading.  In particular, weak cross-correlations, as seen for 

example in Salt Lake City, imply that human exposures to ambient PM will likewise be 

weakly correlated with the composite ambient PM measurement.  Thus, reported health 

effects in cities with weak correlations between monitors should be viewed skeptically. 

EPA correctly points out that high cross-correlations among monitor PM time 

series are a poor indicator of spatial homogeneity (8-280 bottom).  In particular, even 

when correlations are high, there are commonly large differences in average levels or 

percentile values of PM among monitors as seen in Table 8-40.  Correlation should not, 

therefore, be used as an indicator of spatial homogeneity.   

If cross-correlations among monitors are indeed high, and average population 

exposure is indeed approximately proportional to the monitored PM values, and the 

exposure-response relation is indeed linear, then PM effect estimates should be about the 

same using any standardized combination of monitors to represent exposure.  The fact 

that this has been empirically contradicted suggests that exposure-response may not be 

linear, that monitored PM poorly represents population exposure, and that effects of PM 
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reductions would be hard to anticipate. On page 9-36, the CD states “…there may still be 

substantial variability in PM2.5 concentrations across some urban areas, as discussed in 

Chapter 3. 

 

2.2 Inconsistencies Presented in Chapter 9 of the CD 

In Chapter 9, on page 9-14, the authors state, 

Much new information on the distribution of PM2.5 and PM10-2.5 
concentrations across cities is available from the new monitoring networks 
and is presented in detail in Chapter 3. In general, PM2.5 is more evenly 
distributed than PM10-2.5 in terms of both daily/seasonal/yearly averages 
and day-to-day correlations, although there are significant differences 
among cities.  

 
Using “correlation” as a measure of spatial variability is inconsistent with the 

discussion in Chapter 3. Correlation is not a measure of spatial variability. As indicated in 

Chapter 3 and parts of Chapter 8, the 90th percentile difference in concentrations (P90) and 

the coefficient of divergence (COD) were used to provide an indication of the degree of 

spatial uniformity in PM2.5 concentrations across urban areas. 

On page 9-20, the CD states,  

For example, new data reinforce our earlier understanding that ambient 
concentrations of fine particles (measured as PM2.5) are typically more 
highly correlated and/or are more uniform across community monitors 
within an urban area than are coarse particles (measured as PM10-2.5), 
although in some areas the differences are much less pronounced than in 
others. More limited data and knowledge of the behavior of ultrafine 
particles suggest that spatial distributions of their concentrations (which 
decrease quickly from peak levels around major highways) are likely more 
similar to those for coarse particles (which decrease quickly from peak 
levels around primary sources) than for other (accumulation-mode) fine 
particles. Further, new studies reinforce our earlier understanding that fine 
particles generally infiltrate indoors much better than do either coarse or 
ultrafine particles. Thus, central site ambient concentration 
measurements are a better surrogate for population exposure to 
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accumulation-mode fine particles, measured as PM2.5, than for either 
coarse or ultrafine particles, although there may be large differences 
in PM2.5 concentrations across many urban areas (emphasis added). 
 

What is really relevant is whether or not reductions in ambient monitor-site PM 

would produce predicted reductions in community mortality. Because different PM 

monitoring sites within the same community can lead to quite different PM effect 

estimates, the correlations with exposure cited by the CD seem somewhat beside the 

point. New exposure studies do not indicate that fine particles measurements at central 

monitoring sites are good indicators of personal exposures of PM2.5 in time-series studies. 

As indicated earlier, if outdoor PM constituent concentration profiles are either spatially 

or temporally variable, it is likely that exposure misclassification errors could be 

introduced in the analysis of PM air pollution and health data. Thus, the use of central 

monitoring site data obtained by averaging spatial heterogeneous monitoring sites may 

introduce exposure misclassification errors that contribute to the greater heterogeneity of 

risk estimates derived from different locations in studies of both mortality and morbidity 

effects (see discussion on page 9-36). 

On page 9-37, the CD notes, 

Variability in PM concentrations across study areas could influence 
epidemiologic study results. For larger metropolitan areas, including 
monitors in outlying areas may bias the exposure estimate and reduce the 
correlation between the averaged concentration and the true population 
exposure. From among those U.S. cities in which epidemiological studies 
have been conducted, areas with more uniformity in PM2.5 concentrations 
include Chicago and Detroit, whereas areas with more spatial variability 
include Seattle and Los Angeles. There are a number of factors that could 
influence spatial variability of PM concentrations, including topography, 
location of major PM sources, and weather patterns. Greater spatial 
variability in PM levels would be expected to increase exposure error, 
potentially affecting epidemiologic study results in those areas. 
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Upon reviewing Table 8-41 on page 8-282, one finds that both Chicago and 

Detroit are ranked “Intermediate’ (applying the P90 ranking) in spatial variability and not 

ranked “Relatively Homogeneous”. Seattle is ranked either as “Intermediate” or 

“Heterogeneous”, depending upon whether an outlying site is removed. Los Angeles is 

ranked either as “Heterogeneous” or “Very Heterogeneous,” depending upon whether an 

outlying site is removed. The point here is that neither Chicago, Detroit, Seattle, nor Los 

Angeles was ranked in Table 8-41 as “Relatively Homogeneous.” Thus, all four sites 

experienced various degrees of spatial heterogeneity. Thus, as indicated by the authors of 

Chapter 9 on page 9-37, greater spatial variability in PM concentrations would be 

expected to increase exposure error and thus potentially affect epidemiologic study 

results in those areas. 

As noted in Chapter 3, spatial variability differences may not be strictly related to 

the distance between monitors, especially where topography and sources of primary PM 

play a role. One key conclusion reached in the discussion of spatial variability in Chapter 

3 is that whereas high correlations of PM2.5 provide an indication of the spatial uniformity 

in temporal changes in directions (i.e., concentrations at both sites increase or decrease 

together) across urban areas, the correlations do not imply uniformity in the PM2.5 

concentrations themselves. An important observation that has a direct impact on 

measurement error in the epidemiology analyses is that in many cases, as described in 

Chapter 3, correlation coefficients ranged from high to low values among monitor pairs 

within the various MSAs. Based on this observation and the data provided in Appendix 

3A, it can be concluded that the results in Chapter 3 provided clear evidence that fine 

particle concentrations are less homogeneous than had been previously assumed. 
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2.3 Ramifications of Spatial Variability 

Only two (New York, Oakland) statistically significant positive associations 

between PM and mortality were found in the 90-city NMMAPS study and a statistically 

significant negative association was found in one (Little Rock). Thirty-seven percent of 

the 90 cities resulted in negative estimates of effect in city-specific analyses. In cities 

with multiple PM monitors, estimated unit effects of PM from time-series studies can 

vary widely [8-285], depending on which monitor or combination of monitors is used as 

the ambient PM measure; see Ito et al. (1995) and Roberts (2003). 

The representativeness of the monitoring sites for population exposure of both the 

particle metrics and gaseous pollutants may be less than optimum. In reports submitted to 

the U.S. EPA that commented on epidemiology analyses, Dr. Paul Switzer (2003, 2004a, 

2004b, 2004c) notes that spatial variability is an important consideration that tends to 

complicate many of the assumptions made in the various epidemiology analyses. As 

pointed out in Chapter 3, considerable spatial variability exists at many MSAs as 

measured by differences in absolute concentrations as well as moderate to low correlation 

coefficients.  

It is difficult to extrapolate spatial variability observations from one city to 

another without first examining the data. As described in Chapter 3, a range of 

correlations of PM2.5 concentrations was found between monitoring sites in the cities 

selected for the spatial variability analysis. Although some sites may be highly correlated 

with each other within an MSA, some monitors within a specific MSA may not be highly 

correlated with each other. Thus, within a specific MSA, concentration fields may not be 
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uniform. Considerable spatial variability exists at many MSAs as measured both by 

differences in absolute concentrations as well as moderate to low correlation coefficients. 

Examples show that different PM monitors within the same city can provide quite 

different estimates of PM effects in time-series studies (e.g., Ito et al., 1995). Ito et al. 

(1995) show that it is not necessarily the case that straightforward monitor averaging 

provides more precise estimates of PM effects than other monitor combinations or even 

single monitors. As indicated in Ito et al. (1995) and the comments on the CD provided 

by Dr. Switzer (2003, 2004a, 2004b, 2004c), it is incorrect to assume, as has been done in 

parts of the CD, that site-to-site correlation is high within all cities. As emphasized by Dr. 

Switzer in his comments, although the latest revised draft of Chapter 8 of the CD 

critically describes a number of issues, the conclusions in Chapters 8 and the latest 

revision of Chapter 9 appear to reflect an unwarranted leap over many of the criticisms 

that it, itself, has raised. In addition, there were several issues not adequately addressed in 

the revised Chapter 8 of the CD and not adequately summarized in the revised Chapter 9. 

The CD is sometimes completely uncritical of the literature that it cites in support of its 

conclusions. The variability in site-to-site correlation within a geographic area can affect 

relative risk estimates. Data from the PM2.5 monitoring network in 1999, 2000, and 2001 

indicate that relatively high site-to-site correlations are not necessarily exhibited in most 

cities. As noted in Chapter 3 and stressed in parts of the revised Chapter 8, the correlation 

between sites is highly variable. As noted by Dr. Switzer (2003, 2004a, 2004b, 2004c) 

and mentioned earlier, weak cross-correlations of ambient PM measurements between 

monitors in the same city suggest that a PM-effect analysis, based on a composite 

ambient time series for that city, is likely to be misleading. 

 
26 



 

3. The Importance of the Assumption of Linearity between Exposure and 
Response 
 
As discussed by Dr. Switzer (2004c), a linear (proportional) concentration-

response relationship is key to many of the inferences and conclusions that Chapter 9 

draws from the studies that it has reviewed, although only a single page in Chapter 9 is 

devoted to this central topic. Concentration-response linearity is central to many of the 

inferences and conclusions concerning PM effects drawn in Chapter 9, including 

discussions of exposure measurement error, confounding investigations, heterogeneity 

investigations, and fundamental modeling of time trends and weather. So central is 

linearity hypothesis that it is incorporated a priori in many of the studies that Chapter 9 

has reviewed.   

Below is a succinct discussion about the concentration-response (C-R) functions 

used in epidemiological studies as described by Abt Associates Inc. (2003) in their report 

to the U.S. EPA, Office of Air Quality Planning and Standards. The concentration-

response (C-R) functions used in the risk assessment are empirically estimated 

relationships between average ambient concentrations of PM and the health endpoints of 

interest (e.g., short- and long-term exposure mortality or hospital admissions) reported by 

epidemiological studies for specific locales. Most of the epidemiological studies use a 

method referred to as “Poisson regression” to estimate exponential (or log-linear) C-R 

functions in which the natural logarithm of the health endpoint is a linear function of PM. 

The Poisson regression is essentially a linear regression of the natural logarithm of the 

dependent variable on the independent variable. The form of the exposure-response 

relationship is: 
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y = B eβx , (1) 

where x is the ambient PM level, y is the incidence of the health endpoint of interest of 

PM level x, β is the coefficient of ambient x concentration, and B is the incidence at x=0, 

i.e., when there is no ambient PM. The relationship between a fixed ambient PM level, 

xo, for example, and the incidence of a given health endpoint associated with that level 

(denoted as yo) is then 

y0 = B eβxo ,  (2) 

C-R functions use daily average PM levels as input that relate these levels to the 

daily incidence of the health endpoint. The difference in health effects incidence, ∆y = y 

– y0, from y to the baseline incidence rate, y0, corresponding to a given difference in 

ambient PM levels, ∆x = x – x0, can be derived by subtracting equation (2) from equation 

(1), which yields: 

∆y = yo[eβ∆x – 1] .  (3) 

Alternatively, the difference in health effects incidence can be calculated 

indirectly using relative risk. Relative risk (RR) is a measure commonly used by 

epidemiologists to characterize the comparative health effects associated with a particular 

air quality comparison. The risk of mortality at ambient PM level x0 relative to the risk of 

mortality at ambient PM level x, for example, may be characterized by the ratio of the 

two mortality rates: the mortality rate among individuals when the ambient PM level is x0 

and the mortality rate among (otherwise identical) individuals when the ambient PM level 

is x. This is the RR for mortality associated with the difference between the two ambient 

PM levels, x0 and x. Given a C-R function of the form shown in equation (1) and a 

particular difference in ambient PM levels, ∆x, the RR associated with the difference in 
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ambient PM, denoted as RR∆x, is equal to eβ∆x . The difference in health effects incidence, 

∆y, corresponding to a given difference in ambient PM levels, ∆x, can then be calculated 

based on this RR: 

∆y = yo(RR∆x – 1).  (4) 

Equations (3) and (4) are simply alternative ways of expressing the relationship 

between a given difference in ambient PM levels, ∆x, and the corresponding difference in 

health effects incidence, ∆y. These equations are the key equations that combine air 

quality information, C-R information, and baseline health effects incidence information 

to estimate ambient PM health risk. Note that Equations (3) and (4) are essentially 

independent of the initial absolute value of the ambient PM concentration. 

Based on the Abt Associates Inc. discussion above, it is clear that much of the 

linear (i.e., proportional) exposure-response relationship is key to many of the inferences 

and conclusions that Chapter 8 draws from the studies that it has reviewed. As discussed 

by Switzer (2003, 2004a, 2004b, 2004c), much of the work on the measurement error 

approach, exemplified by Dominici et al. (2000) and Zeger et al. (2000), is solidly tied to 

an assumption of proportionality, i.e., the health effect reduction that follows from a 

fixed decrease in ambient PM is assumed to be the same regardless of the current ambient 

PM level. 

The CD discussed the issue of exposure-effect proportionality, vis-à-vis exposure 

thresholds, in several places. When non-proportional effects are allowed in the effect 

estimation model, the estimated ambient PM-effect relationship often departs from 

proportionality, as can be seen for many cities in multi-city studies, such as Daniels et al 

(2000), Dominici et al. (2002), and Moolgovkar (2003). In these studies, the response is 
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modeled as a low-order parametric spline function of ambient PM. Application of the 

spline response model to different cities yielded a variety of response shapes, often with 

inadequate precision, suggesting that there are statistical difficulties distinguishing 

between linearity and non-linear spline models. Formal tests for response-function 

linearity will have low statistical power against plausible non-linear alternatives, not 

necessarily alternative models with zero-effect thresholds. Indeed, EPA concluded that 

the available information simply does not allow for a clear choice (8-308).   

However, notwithstanding the heavily weighted preference for linear response 

functions, non-linearity will have important consequences for the estimation of PM health 

effects that cannot be summarized by a single coefficient of proportionality. Therefore, 

direct estimates of the concentration-response relation should replace a priori 

assumptions of proportionality, and statistical tests for distinguishing linear and non-

linear response functions should have adequate power. 

Instead, Chapter 9 appears to reverse the logic by putting the burden on 

disproving the proportionality assumption without regard to statistical power (Switzer, 

2004c).  As an example of this reversed logic, Chapter 9 states that available studies do 

not provide strong evidence of a clear concentration threshold for health effects (9-42).  It 

is not evident that the strict proportionality assumption that Chapter 9 takes as a null 

hypothesis is even biologically plausible (i.e., the health effect reduction that follows 

from a fixed decrease in ambient PM is assumed to be the same regardless of the current 

PM level). 

 Switzer (2003, 2004a, 2004b, 2004c) points out that the conclusions of the CD 

rely strongly on questionable commonality and linearity of the PM-effect response 
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function. Many of the disparate separate city estimates of PM response functions, 

reported in the CD, appear more like non-proportional response functions, and those that 

are more or less proportional have varying proportionality constants indicative of 

different PM effects in different cities. Switzer (2003, 2004a, 2004b, 2004c) notes that in 

several multi-city studies, PM response functions were pooled across cities, as in 

Schwartz and Zanobetti (2000) and Daniels et al (2000), even though city-to-city 

differences among PM-effect response functions are not obviously in the range of 

sampling variability. Such pooling across cities could create a pooled response function 

that is roughly linear, as pointed out in the two studies cited in this paragraph. However, a 

pooled response function is not readily interpretable, and the benefits of ambient PM 

reductions in any particular city cannot be deduced from the pooled response function.  

Such pooling of response functions across cities ignores monitoring/exposure 

heterogeneity among cities, as described in the previous section. Furthermore, a pooled 

PM-effect response function has no concrete interpretation in the presence of 

heterogeneities of various kinds. Given the inter-city heterogeneity of PM response 

functions, a combined PM response function that applies to no city, nor to the group of 

cities treated as single data set, provides little insight for standard-setting purposes.  

Unfortunately, the CD discounts the importance of studies that show response thresholds 

(e.g., Smith et al. 2000), in favor of pooled response functions that are difficult to 

interpret. 

The assumed linear concentration-response relationship also has implications 

regarding the need for separate 24-hour and annual standards. The proportionality of 

concentration-response implies that a reduction in the annual average will reduce both 
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long-term and short-term effects in the same proportion. A separate 24-hour standard is 

superfluous in the linear concentration-response context. Advocating for a separate 24-

hour standard must imply non-linearity in concentration-response. 

 

4. Conclusion 

In reaching its most current conclusions concerning its assessment of 

epidemiologic evidence in its revised version of Chapter 9 of the PM Criteria Document, 

the EPA has considered information in relation to several criteria (see Page 9-21) noted at 

the outset of Section 9.2 of the CD: (1) the strength of reported associations, in terms of 

magnitude, statistical significance, and statistical power/precision of effects estimates; (2) 

the robustness of reported associations to the use of alternative model specifications, 

potential confounding by co-pollutants, and exposure misclassification related to 

measurement error; (3) the consistency or general concordance of findings in multiple 

studies of adequate power, and in different persons, places, circumstances and times; (4) 

temporality, in terms of lag periods between exposure and observed effects; (5) the nature 

of concentration-response relationships; and (6) information from natural experiments or 

intervention studies as to the extent to which reductions in PM-related air pollution have 

been observed to be associated with improvements in health measures. 

The available epidemiologic information does not meet the criteria for a 

convincing case for a causative association, nor does this information provide a basis for 

anticipating the effects of PM reductions. As new information became available and new 

modeling approaches were tried, inconsistencies in PM effect estimates continued to 

accumulate. Although Chapter 9 does enumerate important caveats regarding the role of 
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modeling choices on PM effect estimates, many of its own caveats were put aside in 

drawing conclusions. 

The inconsistencies and the sensitivity of PM effect estimates to modeling choices 

are recognizable. Statistical concerns, which include weather and time trend covariation, 

additivity assumptions, seasonal differences, regional grouping, spatial heterogeneity 

both between cities and within cities, time lag selection, and treatment of gaseous 

pollutant confounders have been discussed many times. That PM effect estimates are 

delicate is not surprising given that they are superimposed on much stronger effects due, 

for example, to concomitant weather variations. 

Clearly, even though considerable discussion has taken place both in Chapter 8 

and at CASAC deliberations, the authors of Chapter 9 have made the decision not to 

factor into its conclusions the large uncertainties associated with the use of the 

epidemiologic methodology and the resulting inconsistencies in PM effect estimates that 

continued to accumulate. Without a clear statement in Chapter 9 that indicates the 

ramifications of these serious deficiencies associated with the effects estimates, a 

selective set of data within the PM Criteria Document will be cited in the EPA’s Staff 

Paper and used in risk assessments without acknowledgement of the large uncertainties 

associated with the inputted data. Statistical uncertainty and risk analyses performed by 

the Staff Paper authors will not include considerations associated with the highly 

uncertain risk estimates, which actually include values that are positive, negative, and no 

effect estimates. Pooled estimates will be used that will blur the actual uncertainty 

associated with the estimates. Without a clear understanding of the reasons for 
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inconsistent effects estimates, one cannot rule out the possibility that the PM effect 

estimates are model artifacts. 

An alternative to the cause-and-effect explanation provided in Chapter 9 is that 

the results we are citing may be mostly associated with these modelling artifacts. One is 

left with answering a serious question: If the time-series data are the most important 

information available for establishing Federal PM standards, are the data good enough to 

use in the decision-making process? Based on the evidence presented in Chapters 8 and 9 

in the CD, one simply cannot draw comfortable conclusions regarding the circumstances 

and magnitudes of ambient PM health effects, or whether reported PM health effects are 

causative. Thus, one might conclude that there is still much uncertainty remaining in the 

epidemiological time-series results and many of the concerns expressed by the EPA in 

the Carbon Monoxide CD about the strengths and limitations of the extensive body of 

epidemiologic evidence of associations between health effects and air pollutants have not 

been adequately addressed in the most current version of the PM CD. The growing 

pattern of inconsistent and inconclusive findings is troublesome and presents both 

scientists and policymakers with a very difficult decision. Simply stated, the science 

based on epidemiological results is not substantial enough at the moment to provide the 

foundation upon which a clear path can be built that leads directly from the science to the 

policymaking decision arena. 

 
34 



5. References 

Abt Associates Inc. (2003). Particulate Matter Health Risk Assessment for Selected 
Urban Areas: Draft Report. Prepared for the Office of Air Quality Planning and 
Standards, U.S. Environmental Protection Agency, Contract No. 68-D-03-002. 

 
Daniels, M.; Dominici, F.; Samet, J. M.; Zeger, S. L. (2000) Estimating particulate 

matter-mortality dose-response curves and threshold levels: an analysis of daily 
time-series for the 20 largest US cities. Am. J. Epidemiol. 152: 397-406. 

 
Dominici, F.; Zeger, S. L.; Samet, J. (2000) A measurement error model for time-series 

studies of air pollution and mortality. Biostatistics 1: 157-175. 
 
Dominici, F.; Daniels, M.; Zeger, S.L.; Samet, J.M. (2002) Air pollution and mortality: 

estimating regional and national dose-response relationships. J. Am. Statist. Assn. 
97: 100-111. 

 
Health Effects Institute (2003)  Revised analyses of the National Morbidity, Mortality, 

and Air Pollution Study (NMMAPS).  Special report.  Boston, MA. 
 
Ito, K.; Kinney, P.L., Thurston, G.D. (1995) Variations in PM-10 concentrations within 

two metropolitan areas and their implications for health effects analyses. Inhal. 
Toxic. 7: 735-745. 

 
Moolgovkar, S. H. (2003) Air pollution and daily mortality in two U.S. counties: season-

specific analyses and exposure-response relationships. Inhalation Toxicology. 
15:877:907. 

 
Roberts, S. (2003) Combining data from multiple monitors in air pollution mortality time 

series studies. Atmospheric Environment 37: 3317-3322. 
 
Schwartz, J.; Zanobetti, A. (2000) Using meta-smoothing to estimate dose-response 

trends across multiple studies, with application to air pollution and daily death. 
Epidemiology 11: 666-672. 

 
Smith, R. L.; Davis, J.M.; Sacks, J.; Speckman, P.; Styer, P. (2000) Regression models 

for air pollution and daily mortality: analysis of data from Birmingham, Alabama. 
Environmetrics 11: 719-743. 

 
Switzer, P. (2003) A Review of Statistical Methods Used in Time-Series Epidemiologic 

Studies of Ambient Particulate Matter and Acute Health Effects Cited by the June 
2003 EPA Draft PM Criteria Document. Report submitted to the U.S. EPA by the 
American Petroleum Institute. 

 
Switzer, P. (2004a) A Review of Statistical Methods Used in Time-Series Epidemiologic 

Studies of Ambient Particulate Matter and Acute Health Effects Cited by the 

 
35 



December 2003 Revised Chapter 8 in the EPA Draft PM Criteria Document. 
Report submitted to the U.S. EPA by the American Petroleum Institute. 

 
Switzer, P. (2004b) A Review of Statistical Methods Used in Epidemiologic Studies of 

Ambient Particulate Matter and Mortality Cited by the June 2004 Revised 
Chapter 8 and Chapter 9 in the EPA Draft PM Criteria Document. Report 
submitted to the U.S. EPA by the American Petroleum Institute. 

 
Switzer, P. (2004c) The EPA Assessment of Epidemiologic Studies of Ambient 

Particulate Matter  [August 2004 Draft of Chapter 9 of the PM Criteria 
Document] An Assessment of the EPA Assessment.  Report submitted to the U.S. 
EPA by the American Petroleum Institute. 

 
U.S. Environmental Protection Agency (2000) Air Quality Criteria for Carbon Monoxide. 

Office of Research and Development, Washington, D.C. EPA 600/P-99/001F. 
June 2000. 

 
Zeger, S. L.; Thomas, D.; Dominici, F.; Samet, J. M.; Schwartz, J.; Dockery, D.; Cohen, 

A. (2000) Exposure measurement error in time-series studies of air pollution: 
concepts and consequences. Environ. Health Perspect. 108: 419-426. 

 
 

 
36 


	A.S.L. & Associates
	September 16, 2004

