Comments on the EPA Document: Policy Assessment for the Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (External Review Draft), EPA-452/P-21-001, October 2021

Docket ID No. EPA-HQ-OAR-2015-0072

Allen S. Lefohn, Ph.D. A.S.L. & Associates, LLC 302 North Last Chance Gulch Suite 410 Helena, Montana 59601 https://www.asl-associates.com/

December 14, 2021

Disclaimer: Dr. Lefohn's comments contained within this document are his own; he represents only himself; no person or organization has seen these comments prior to submission to the Government Docket; and he has not been reimbursed for the time necessary to produce these comments. His comments are directed at suggesting additional material that might be included in the first draft of the EPA document: Policy Assessment for the Reconsideration of the National Ambient Air Quality Standards for Particulate Matter. His comments are submitted into the PM Docket (No. EPA-HQ-ORD-2015-0072) for the purpose of providing scientific clarification for the particulate matter (PM) rulemaking activity.

About the Author

Dr. Allen S. Lefohn is currently President and Founder of A.S.L. & Associates, LLC in Helena, Montana. From 1981 until 2017, he served as President and Founder of A.S.L. & Associates, a Montana corporation. He received his Bachelor of Science degree from UCLA in 1966 and a Ph.D. in physical chemistry from the University of California at Berkeley in 1969. His advisor was Professor George C. Pimentel. During the period 1989 - 1999, he served as an Executive Editor of the internationally recognized journal Atmospheric Environment and is an Emeritus Editor of the Journal. Dr. Lefohn has published approximately 125 peer-reviewed publications, edited four books, presented numerous oral papers, and participated in panel presentations. For many years, he served as an Adjunct Professor of Environmental Engineering at Montana Tech in Butte, Montana. Dr. Lefohn has been involved in all the American Lung Association's annual State of the Air reports (1999-2021). These reports provide a county-by-county summary of ozone (smog) and PM_{2.5} (soot) concentrations experienced across the United States. During a career spanning over 50 years, his research has focused on (1) analyzing results from the EPA's air quality databases for (a) characterizing co-occurrence patterns of criteria air pollutants under ambient conditions (e.g., ozone, sulfur dioxide, particulate matter, and nitrogen dioxide), (b) characterizing ozone trend patterns, and (c) designing research experiments that utilize realistic ambient exposures for assessing human health and vegetation effects, (2) developing exposure-response relationships and indices that

describe the effects of ozone on vegetation and human health, (3) investigating biological mechanisms that influence the nonlinearity response (i.e., weighting of the higher concentrations more than the mid- and low-level values) to ozone for both human health and vegetation, and (4) understanding the relative importance of background ozone in relation to ambient concentrations and how background influences margin of safety considerations under the Clean Air Act. He served as Chairman of the Science Advisory Committee of the Center for Ecological Health Research, University of California, Davis and served as a member of the Committee until January 2002. His research results have been integrated into the EPA rulemaking activities. Between 2007 and 2015, EPA staff, CASAC, and the EPA Administrator discussed the application of an exposure metric, the W126 exposure index, as the federal secondary ozone standard to protect vegetation. Dr. Lefohn created the exposure metric in 1985 with the help of the first-generation Apple Macintosh computer and introduced the metric into the peer-review literature in 1987 and 1988. In October 2015, as well as in December 2020, the EPA Administrator announced that the 8-h ozone standard would be used to control those cumulative W126 exposures that elicit an adverse effect on vegetation; the EPA continues to use the W126 metric as an indicator of the potential risk of ambient ozone exposures to vegetation. With several research investigators, he led an international team to estimate the historical global emissions of sulfur for the period 1850-1990. The sulfur emission estimates are used in global climate change models. An important contribution of his work in the human health research area has been the designing of hour-by-hour ozone concentrations used in several of the key experiments that identified realistic ambient exposure regimes that elicited adverse FEV₁ responses. Over the years, several of these clinical laboratory studies of healthy volunteers have formed the scientific basis for the human health ozone NAAQS, including the current 8-h 70 ppb standard. Dr. Lefohn has lived in Montana for over 45 years and continues to perform his worldwide research from this location.

Executive Summary

On page 2-64 of the 2021 Supplemental PM PA (EPA, 2021a), the authors discuss how episodic impacts from a large natural source can affect $PM_{2.5}$ concentrations in the U.S. by illustrating an example from a 2017 wildfire event. In summer 2017, smoke from wildfires in British Columbia, Canada led to severe air quality degradation in parts of the Pacific Northwest. Smoke from these fires was captured at the North Cascades IMPROVE monitor, where daily fine PM concentrations were increased from a typical baseline of less than 10 μ g/m³ to ~100 μ g/m³ during this period. In reviewing the hourly average PM_{2.5} data in the EPA's AQS database for the period 2017-2019, much higher concentrations are observed near or within wildfires than presented in the Supplemental PM PA (EPA, 2021a).

To better place into perspective the range of magnitude and the seasonal nature of the hourly and average 24-hour $PM_{2.5}$ concentrations that populations are exposed to near and within wildfire areas in the U.S., it is important to review additional monitoring data. $PM_{2.5}$ data from three wildfire events (2018 Camp Fire (Butte County, CA), 2017 Rice Ridge Fire (Missoula County, MT), and 2017 Thomas Fire (Santa Barbara and Ventura

Counties, CA)) are provided here as examples of the degree of severity of the $PM_{2.5}$ concentrations to which populations are exposed during wildfire events. Both parameter code 88101 and 88502 monitors are used in the characterization of the additional monitoring data. Parameter code 88101 monitors (referred to as $PM_{2.5}$ local conditions) are FRM and FEM monitors. Parameter code 88502 monitors (referred to as Acceptable PM_{2.5} AQI & Speciation Mass) are considered by the EPA to be acceptable for defining PM_{2.5} AOI and for Speciation Mass determinations. The initials AOI refer to the EPA's Air Quality Index. The EPA considers 88502 monitors to produce valid data that reasonably match FRM monitors with or without correction. However, EPA notes that data from 88502 monitors should not be used in NAAQS decisions (https://www.epa.gov/aqs/aqs-memos-technical-note-reporting-pm25continuous-monitoring-and-speciation-data-air-guality). Both 88101 and 88502 monitors are used by AirNow in its Interactive Map of Air Ouality to describe the spatial and temporal distribution of PM_{2.5} AQI and 24-h average concentrations (https://gispub.epa.gov/airnow/?mlayer=ozonepm&clayer=none&panel=0). Fig. ES-1 below illustrates the PM_{2.5} AQI readings for November 16, 2018, for monitoring sites near the 2018 Camp Fire in California. The California Air Resources Board (CARB, 2021) indicates that the 2018 Camp Fire was the deadliest wildfire in California history. At least 85 people died as the wildfire burned through Butte County (CA), destroying nearly 19,000 buildings and most of the town of Paradise. The fire generated a large plume of heavy smoke that traveled thousands of miles. The smoke caused dangerously high levels of air pollution in the Sacramento Valley and Bay Area in particular, for a period of about two weeks.

Figure ES-1. AirNow Interactive Map of Air Quality. November 16, 2018. Monitoring sites near the Camp Fire in Butte County, California.

The PM_{2.5} data characterized from the three wildfire events discussed here provide important information about the PM_{2.5} exposures that people can receive during wildfire events. It is suggested that the authors of the Supplemental PM PA document (EPA, 2021a) consider adding this material into the document to provide the reader with examples of the magnitude and frequency of episodic hourly and 24-h average PM_{2.5} concentrations to which populations can be exposed during wildfire events. In the Appendix at the end of this document, Table A-1 (Hourly average PM_{2.5} concentrations (Butte County, California) during the Camp Fire for the November 8 – 22, 2018 period), Table A-2 (Hourly average PM_{2.5} concentrations (Missoula County, Montana) during the Rice Ridge Fire for the August 4 – September 7, 2017 period), and Table A-3 (Hourly average PM_{2.5} concentrations (Ventura County, California) during the Thomas Fire for the December 5 - 17, 2017 period) provide hourly and 24-h average daily concentration information so that the reader is better able to understand the magnitude of the episodic exposures to which populations are exposed during wildfire events.

1. Introduction

The 2019 PM ISA (EPA, 2020a) notes that $PM_{2.5}$ can be generated from both natural and anthropogenic sources. The greatest contributors to primary $PM_{2.5}$ at the national level are agricultural dust, dust resuspended through on-road activities, and fires (i.e., wildfires, prescribed fires, and agricultural fires). Nationally, it has been estimated that wildfire smoke contributes from 10–20% of primary $PM_{2.5}$ emissions per year, and intercontinental transport contributes 0.05 to 0.15 µg/m³ to annual average $PM_{2.5}$ concentrations in the U.S., but that this contribution varies by region and season. On average, natural sources, including soil dust and sea salt, have been estimated to account for approximately 10% of U.S. urban $PM_{2.5}$ (EPA, 2020a).

Abatzogloua and Williams (2016) have noted that widespread increases in fire activity, including area burned, number of large fires, and fire-season length, have been documented across the western United States. Increased fire activity across western US forests has coincided with climatic conditions more conducive to wildfire. Although numerous factors aided the recent rise in fire activity, observed warming and drying have significantly increased fire-season fuel aridity, fostering a more favorable fire environment across forested systems.

Page 2-26 of the Supplemental Policy Assessment (PA) (EPA, 2021a) notes that at longterm monitoring sites in the U.S., annual PM_{2.5} concentrations from 2017 to 2019 averaged 8.0 μ g/m³ (with the 10th and 90th percentiles at 5.9 and 10.0 μ g/m³, respectively) and the 98th percentiles of 24-hour concentrations averaged 21.3 μ g/m³ (with the 10th and 90th percentiles at 14.0 and 29.7 μ g/m³, respectively). The highest ambient PM_{2.5} concentrations occur in the West, particularly in California and the Pacific Northwest. Much of the eastern U.S. has lower ambient concentrations, with annual average concentrations generally well below 12.0 μ g/m³ and 98th percentiles of 24-hour concentrations generally at or below 30 μ g/m³. These concentrations are distinct from design values in part because they include days with episodic events like wildfires and dust storms, which can experience elevated PM_{2.5} and/or PM₁₀ concentrations.

In reviewing the 2019 PM ISA (EPA, 2020a), 2019 PM PA (EPA, 2020b), 2021 Supplemental PM ISA (EPA, 2021b), and the 2021 Supplemental PM PA (EPA, 2021a) documents, there is a paucity of quantitative information about the absolute PM_{2.5} concentrations observed during wildfire episodes that have occurred in the Western and Rocky Mountain states over the period 2017-2019. PM2.5 concentration levels from wildfires can be exceptionally high. Information is lacking in the 2019 PM ISA (EPA, 2020a), 2019 PM PA (EPA, 2020b), 2021 Supplemental PM ISA (EPA, 2021b), and the 2021 Supplemental PM PA (EPA, 2021a) documents about how high these PM_{2.5} concentrations are. Elevated PM2.5 concentrations from wildfires are considered by the EPA in its regulatory attainment designation process as *exceptional events* and are flagged as such in the AQS database. While exceptional events are excluded in the regulatory attainment designations so the EPA can assess the efficacy of control strategies implemented by the states and the tribes, it may not be clear to the public what the level is of the magnitude and duration of elevated PM2.5 concentrations in terms of hourly, as well as 24-h average PM_{2.5} concentration information during these exceptional events. In the comments which follow, I provide quantitative information about the elevated hourly and 24-hour average PM_{2.5} concentration data collected over the 2017-2019 period at monitoring sites near or within three wildfire areas. I suggest this information be included in the revised Supplemental PM ISA (2021b) and/or Supplemental PM PA (2021a) documents. The period of interest in my comments is limited to 2017-2019; in the Supplemental PM PA (EPA, 2021a) document, in many instances, PM_{2.5} concentration information is described for the period 2017-2019. In the West for the years 2020 and 2021, wildfires have continued to occur with populations experiencing episodic hourly and 24-h average PM2.5 concentrations comparable, and in some cases higher, to those experienced during the 2017-2019 period. In the most recent years, many regions of the U.S. have experienced increasing occurrences of elevated AQI readings associated with PM2.5 during the times coincident with wildfires in the West.

2. The Magnitude of PM_{2.5} Episodic Wildfire Concentrations – 2017-2019

As described in the Introduction, Abatzogloua and Williams (2016) noted that widespread increases in fire activity, including area burned, number of large fires, and fire-season length, have been documented across the western United States. In many cases, increases in fire activity have resulted in episodic events that have led to extremely high 24-h average PM_{2.5} concentrations, as well as extremely high hourly average PM_{2.5} concentrations. In the previous section, it was mentioned that wildfires are considered exceptional events for the purpose of regulatory attainment designations by the Agency. The EPA's Exceptional Events Rule (81 FR 68216, October 3, 2016), most recently updated in 2016, describes the process by which these events can be excluded from the design values used for comparison to the NAAQS. Regionally concurred exceptional

events are unusual or naturally occurring events, such as wildfires or high wind dust events that have 1) resulted in PM_{2.5} concentrations above the level of the NAAQS, 2) been submitted by tribal, state, or local air agencies under the EPA's Exceptional Events Rule to their respective EPA Region, and 3) received concurrence. Exceptional events are unusual or naturally occurring events that can affect air quality but are not reasonably controllable using techniques that tribal, state, or local air agencies may implement in order to attain and maintain the National Ambient Air Quality Standards (NAAQS) (https://www.epa.gov/air-quality-analysis/treatment-air-quality-data-influencedexceptional-events-homepage-exceptional). An exceptional event is not related to the frequency of occurrence of episodic events, such as wildfires and dust storms, but rather the event is related to the source associated with the event (e.g., wildfires, controlled burns, fireworks, dust storms, stratospheric ozone intrusions to the surface, and volcanic eruptions).

In September of 2016, the EPA finalized revisions to the Exceptional Events Rule to establish criteria and procedures for use in determining if air quality monitoring data has been influenced by exceptional events (https://www.epa.gov/air-quality-analysis/treatment-air-quality-data-influenced-exceptional-events-homepage-exceptional). The rule

- applies to all exceptional event types and all NAAQS,
- ensures that air quality measurements are properly evaluated and characterized with regard to their causes,
- identifies reasonable actions that state, local and tribal air quality agencies should take to address the air quality and public health impacts caused by these types of events,
- avoids imposing unreasonable planning requirements on air quality agencies related to violations of the NAAQS due to exceptional events, and
- ensures that the use of air quality data, whether afforded special treatment or not, is subject to full public disclosure and review.

In the Supplemental PM PA (EPA, 2021a), Fig. 2-19 (page 2-33) presents the frequency distribution of 2-hour average $PM_{2.5}$ mass concentrations from all FEM $PM_{2.5}$ monitors in the U.S. for 2017-2019. According to the document, at sites meeting the current primary $PM_{2.5}$ standards, these 2-hour average concentrations generally remain below 10 µg/m³, and virtually never exceed 30 µg/m³. Two-hour concentrations are higher at sites violating the current standards, generally remaining below 16 µg/m³ and virtually never exceeding 80 µg/m³ (EPA, 2021a, page 2-33).

Figure 2-19. Frequency distribution of 2017-2019 2-hour averages for sites meeting both or violating either PM_{2.5} NAAQS for October to March (blue) and April to September (red). Source: EPA (2021a).

On page 2-34 of the Supplemental PM PA document (EPA, 2021a), the document notes that the extreme upper end of the distribution of 2-hour $PM_{2.5}$ concentrations is shifted higher during the warmer months (red in Fig. 2-19), generally corresponding to the period of peak wildfire frequency (i.e., April to September) in the U.S. According to the document, at sites meeting the current primary standards, the highest 2-hour average concentrations measured virtually never occur outside of the period of peak wildfire frequency. Most of the sites measuring these very high concentrations are in the northwestern U.S. and California, where wildfires have been relatively common in recent years (see Fig. A-1 below from the Supplemental PM PA document (page A-3)).

Figure A-1. Percentages of 2017-2019 2-hour average PM_{2.5} mass concentrations above 140 µg/m³.

Source: EPA (2021a).

On page 2-64 of the 2021 Supplemental PM PA (EPA, 2021a), the authors discuss how episodic impacts from a large natural source can affect $PM_{2.5}$ concentrations in the U.S. by illustrating an example from a 2017 wildfire event. In summer 2017, smoke from wildfires in British Columbia, Canada led to severe air quality degradation in parts of the Pacific Northwest. Smoke from these fires was captured at the North Cascades IMPROVE monitor, where daily fine PM concentrations were increased from a typical baseline of less than 10 μ g/m³ to ~100 μ g/m³ during this period.

In reviewing the hourly average PM_{2.5} data in the EPA's AQS database for the period 2017-2019, much higher 24-h average and hourly average concentrations are observed than presented in the Supplemental PM PA (EPA, 2021a) using the IMPROVE monitor example. To better place into perspective the range of magnitude and the seasonal nature of the hourly and average 24-hour PM_{2.5} concentrations that populations are exposed to near and within wildfire areas in the U.S., it is important to review additional monitoring data from the EPA's AQS database. PM_{2.5} data from three wildfire events are provided as examples of the degree of severity of the PM_{2.5} concentrations to which populations are exposed during wildfire events. It is suggested that the authors of the Supplemental PM PA document (EPA, 2021a) consider adding this material into the supplemental PM PA to provide the reader with examples of the magnitude and frequency of episodic hourly and 24-h PM_{2.5} concentrations to which populations can be exposed during wildfire

events. To place into perspective the measured $PM_{2.5}$ concentrations during the three wildfires described below, the current Federal 24-h $PM_{2.5}$ human health standard is 35 $\mu g/m^3$. There currently is no 1-h average $PM_{2.5}$ standard.

In its 2021 report about the 2018 Camp Fire

(https://en.wikipedia.org/wiki/Camp_Fire_(2018)), the California Air Resources Board (CARB, 2021) indicated that the 2018 Camp Fire was the deadliest wildfire in California history. At least 85 people died as the catastrophic wildfire burned through Butte County, destroying nearly 19,000 buildings and most of the town of Paradise. According to the document, the fire generated a large plume of heavy smoke that traveled thousands of miles. The smoke caused dangerously high levels of air pollution in the Sacramento Valley and Bay Area in particular, for a period of about two weeks. With the first initial impacts recorded on November 8, the highest levels of particulate matter (PM) were recorded between November 13 and November 16, 2018, and concentrations returned to normal conditions, below current state and federal PM ambient air quality standards (standards), by November 22. According to the CARB document, the short-term episodes in particulate matter from the Camp Fire and other wildfires included in its analysis were comparable to industrial and mobile source pollution levels observed in countries such as China and India.

CARB (2021) notes that

During the 2018 Camp Fire in Paradise, California, all of the Butte County ambient air monitoring sites were in operation. The California Air Resources Board (CARB) operates monitoring stations in Chico (carbon monoxide [CO], nitrogen dioxide [NO₂], ozone, particulate matter [PM₁₀ and PM_{2.5}], and toxics), Gridley (PM_{2.5}), and Paradise (ozone and PM_{2.5}).

Two monitoring sites located in Paradise did not collect data during the Camp Fire; the ozone monitor at the Paradise- Airport site and the PM monitor at the Paradise-Theater site ceased operations when Pacific Gas and Electric Company (PG&E) cut power to the area on November 8. A filter-based monitor at the Chico site, 15 miles away from the Camp Fire, continued to operate, collecting samples on November 10, 2018, and November 16, 2018, (on an every 6th day collection schedule). The Chico site also collected data using a specialized speciation sampler, which uses filters to collect samples of particulate matter. The filters are later processed in a laboratory to determine the chemical composition of the particulate matter. Among other details, speciation helps quantify PM_{2.5} mass, trace elements, wood smoke tracers, carbon, and ions.

Particulate matter increased at most sites in Northern California west and south of the Camp Fire (Figure 2). The highest PM concentrations were recorded in Chico, the closest monitoring site to the Camp Fire and in the direct path of the smoke plumes (Figure 3). The average PM concentrations at selected monitoring sites showed significant increases when compared to both historical (2010 to 2017) November averages and to the period in which the Camp Fire occurred (Figure 3; Tables 2 and 3). From November 8 to November 22, PM_{2.5} increased by more than 300 percent from historical averages.

Table 1 from CARB (2021) shows that the maximum 24-h average $PM_{2.5}$ concentration at the Chico monitoring station (06070008-1) was 412 µg/m³ on November 16, 2018. At the Modesto, Sacramento-Del Paso, and San Jose monitoring sites, the maximum 24-h PM_{2.5} average concentrations were 190 µg/m³ (November 16), 228 µg/m³ (November 15), and 134 µg/m³ (November 15), respectively.

Figure 2: Daily PM_{2.5} concentrations - November 2018

Camp Fire Air Quality Data Analysis

11

FIGURE 3: NOVEMBER MONTHLY AVERAGE CONCENTRATIONS AT SELECTED SITES – NOVEMBER 2018 COMPARED TO AVERAGE OF NOVEMBERS 2010-2017

Selected Monitoring Sites

The following tables highlight the significant increase in $PM_{2.5}$ concentrations recorded at selected sites in the path of the smoke plume and compares them to average concentrations from the previous eight years (2010-2017).

PM25 Site Concentration (µg/m³) Date Chico 412 11/16/18 Modesto 190 11/16/18 Sacramento-Del Paso 228 11/15/18 San Jose 134 11/15/18

Source: CARB (2021).

TABLE 1: MAXIMUM PM CONCENTRATIONS AT FOUR SELECTED SITES

Source: CARB (2021).

Table A-1 in the Appendix shows for the Chico and Gridley monitors the hour-by-hour PM_{2.5} concentrations for the period November 8 – 22, 2018 for the 88502 monitors near the Camp Fire. The hourly PM_{2.5} data were downloaded from the EPA's AQS website (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw). Parameter code 88502 monitors are considered by the EPA to be acceptable for defining PM_{2.5} AQI and for Speciation Mass determinations. The EPA considers 88502 monitors to produce valid data that reasonably match FRM monitors with or without correction. However, EPA notes that data from 88502 monitors should not be used in NAAQS decisions (https://www.epa.gov/aqs/aqs-memos-technical-note-reporting-pm25-continuous-monitoring-and-speciation-data-air-quality). Hourly average PM_{2.5}

concentrations (shown in red in Table A-1) at Chico, California (AQS ID 060070008-3) on November 16, 2018, ranged from 255 μ g/m³ to 585 μ g/m³. The 24-h average concentration at this site on November 16, 2018, was 417 μ g/m³. The 88101 monitor (060070008-1), which is a bulk sampler, on that same day recorded 412 μ g/m³. On November 9, 2018, the Chico monitor (060070008-3) recorded 3 consecutive PM_{2.5} hourly average concentrations of 995 μ g/m³ at 1700, 1800, and 1900 LST. The 24-h average PM_{2.5} concentration was 279 μ g/m³ on that day. At the Chico monitor (060070008-3), for the November 8 – 22, 2018 period, there were 164 hours when the PM_{2.5} hourly average concentrations that ranged from 200 to 995 μ g/m³.

In Montana, additional monitoring data during a 2017 wildfire provide information on PM_{2.5} concentrations that populations are exposed to near and within wildfire areas. In Montana, the Rice Ridge Fire (https://en.wikipedia.org/wiki/Rice Ridge Fire) was started by a lightning strike on July 24, 2017. It burned northeast of Seeley Lake in the Lolo National Forest in Montana. The fire became a megafire on September 3, 2017, growing from 40,000 acres (162 km²) to over 100,000 acres (405 km²), at which time it became the nation's top wildfire priority. Located north and east of Seeley Lake, Montana, over 700 firefighting personnel were assigned to the blaze, primarily active in a mountainous lodgepole and mixed conifer forest. At one point, the fire threatened over 1,000 homes in Powell County and Missoula County, including the town of Seeley Lake. The hourly PM_{2.5} data were downloaded from the EPA's AQS website (https://aqs.epa.gov/aqsweb/airdata/download files.html#Raw) and summarized in Table A-2 in the Appendix. A monitor (an 88502 monitor with AQS ID 300630038-3) is in the Seeley Lake area. On August 4, 2017, a 24-h average PM_{2.5} concentration of 369 $\mu g/m^3$ at Seeley Lake was recorded; the highest hourly PM_{2.5} concentration was 994.6 $\mu g/m^3$, which occurred two times during the day. Between August 4 and September 7, 2017, 9 days were recorded at the Seeley Lake monitor, where the hourly average $PM_{2.5}$ concentration reached a maximum of 994.6 μ g/m³. During this same period, there were 30 occurrences of the 24-h average $PM_{2.5}$ concentration above 100 μ g/m³. On September 6, 2017, a maximum 24-h average concentration of 642 μ g/m³ was recorded.

A few months after the 2017 Rice Ridge fire in Montana, a massive wildfire broke out in southern California. California had already been experiencing several serious wildfires during the year. In December 2017, a massive fire in the Ojai, California area, referred to as the Thomas Fire (https://en.wikipedia.org/wiki/Thomas_Fire), affected Ventura and Santa Barbara Counties. It burned approximately 281,893 acres (440 sq mi; 114,078 ha) before being fully contained on January 12, 2018, As of August 2020, the Thomas Fire is California's tenth-most destructive wildfire. Ventura's agriculture industry suffered at least \$171 million in losses due to the Thomas Fire. The hourly PM_{2.5} data from a monitoring site in Ojai, California were downloaded from the EPA's AQS website (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw) and summarized in Table A-3 in the Appendix. The monitor is an 88101 monitor with AQS ID 061111004-3). Elevated PM_{2.5} hourly average concentrations were measured at the site from December 5 through December 17, 2017. On December 6, a maximum hourly average PM_{2.5} concentration of 979 μ g/m³ was recorded. On that same day, the 24-h PM_{2.5}

concentration of 557 μ g/m³ was recorded. Over the 13-day period, there were 8 days when the 24-h average PM_{2.5} concentration was above 100 μ g/m³.

3. Identifying Additional Episodic PM_{2.5} Events that May be Associated with Wildfires

The PM_{2.5} data characterized from the three wildfire events discussed in Section 2 provide important information about the PM_{2.5} exposures that people can receive during wildfire events. It is suggested that the authors of the Supplemental PM PA document (EPA, 2021a) consider adding this material into the document to provide the reader with examples of the magnitude and frequency of episodic hourly and 24-h average PM_{2.5} concentrations to which populations can be exposed during wildfire events. In the Appendix at the end of this document, Table A-1 (Hourly average PM_{2.5} concentrations (Butte County, California) during the Camp Fire for the November 8 – 22, 2018 period), Table A-2 (Hourly average PM_{2.5} concentrations (Missoula County, Montana) during the Rice Ridge Fire for the August 4 – September 7, 2017 period), and Table A-3 (Hourly average PM_{2.5} concentrations (Ventura County, California) during the Thomas Fire for the December 5 - 17, 2017 period) provide hourly and 24-h average daily concentration information so that the reader is better able to understand the magnitude of the episodic exposures to which populations are exposed during wildfire events.

Besides the three examples provided in Section 2, additional short-term PM_{2.5} exposure information from wildfires during the 2017-2019 period may be available in the EPA's AQS database. Local air quality agencies are required to report air quality using the Air Quality Index (AQI) as required in 40 CFR Part 58.50 and according to 40 CFR Appendix G to Part 58 (EPA, 2018). Metropolitan Statistical Areas (MSAs) with a population of more than 350,000 are required to report the AQI daily to the public. MSAs must report the AQI daily, which is defined as at least five days each week. In implementing its Air Quality Index reported across the U.S., EPA for PM_{2.5} separates the range of 24-h average concentrations into the following color-coded ranges as described by the American Lung Association's State of the Air report (2021):

24-hour PM _{2.5} Concentration	Air Quality Index Levels
0.0 μg/m³ to 12.0 μg/m³	Good (Green)
12.1 µg/m³ to 35.4 µg/m³	Moderate (Yellow)
35.5 μg/m³ to 55.4 μg/m³	Unhealthy for Sensitive Groups (Orange)
55.5 μg/m³ to 150.4 μg/m³	Unhealthy (Red)
150.5 μg/m³ to 250.4 μg/m³	Very Unhealthy (Purple)
greater than or equal to 250.5 µg/m³	Hazardous (Maroon)

Source: American Lung Association (2021).

Additional examples of episodic PM_{2.5} events (i.e., 24-h average values) that may be associated with wildfires during the 2017-2019 period were identified by sorting maximum 24-h average PM_{2.5} concentrations using Quick Look summaries from the EPA's AQS database. As indicated in Section 2 of this document, maximum 24-h PM_{2.5} concentrations experienced in or near the wildfires were equal to or greater than 250.5 μ g/m³ (i.e., AQI Hazardous reading designated by the maroon color in the table above). Table 1 below identifies those 88101 monitoring sites that met this criterion. Table 2 identifies those 88502 monitoring sites that experienced 24-h average PM_{2.5} maximum concentration is identified in red. Several of the PM_{2.5} monitoring sites are in Washington, Oregon, and California, where major wildfires occurred during the 2017-2019 period.

References

- Abatzoglou, J. T., Williams, A.P. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America, 113 (42), 11770–11775. doi:10.1073/pnas.1607171113.
- American Lung Association. 2021. State of the Air 2021. Washington, DC. https://www.lung.org/getmedia/17c6cb6c-8a38-42a7-a3b0-6744011da370/sota-2021.pdf.
- California Air Resources Board (CARB). 2021. Camp Fire Air Quality Analysis. Air Quality Planning & Science Division Monitoring & Laboratory Division Research Division. Sacramento, California. https://ww2.arb.ca.gov/sites/default/files/2021-07/Camp_Fire_report_July2021.pdf.
- U.S. EPA. 2018. Technical Assistance Document for the Reporting of Daily Air Quality the Air Quality Index (AQI). EPA 454/B-18-007. Research Triangle Park, NC: Environmental Protection Agency. Available at https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf.
- US EPA. 2020a. Integrated Science Assessment of Ozone and Related Photochemical Oxidants. EPA/600/R-20/012. April. Research Triangle Park, NC: Environmental Protection Agency. April. Available at: https://www.epa.gov/naaqs/ozone-o3-standards-integrated-science-assessments-current-review.
- US EPA. 2020b. Policy Assessment for the Review of the Ozone National Ambient Air Quality Standards. EPA-452/R-20-001. May. Available at https://www.epa.gov/naaqs/ozone-o3-standards-policy-assessments-current-review.
- US EPA. 2021a. Policy Assessment for the Reconsideration of the National Ambient Air Quality Standards for Particulate Matter, External Review Draft), EPA-452/P-21-001, October 2021.

US EPA, 2021b. Supplement to the 2019 Integrated Science Assessment for Particulate Matter (External Review Draft), EPA/600/R-21/198, September 2021.

AQS ID	Param.	POC	EDT	Duration	Year	Unit	Latitude	Longitude	Meas.	Max	2nd	3rd	4th	Annual	Method Code
061111004	88101	3	2	Х	2017	105	34.44806	-119.231	360	557	529.4	186.5	178.8	13.49	170
410390059	88101	1	0	7	2017	105	44.06722	-123.141	120	330	46.8	42.5	36.4	10.92	145
410391009	88101	1	0	7	2017	105	44.0467	-123.018	59	286.8	134.1	41.4	27.9	13.68	143
060070008	88101	1	0	7	2018	105	39.76168	-121.84	346	411.7	299.9	197	192.5	13.77	145
060450006	88101	3	2	Х	2018	105	39.15047	-123.207	362	263.2	198	106	70.5	11.35	170
530470013	88101	5	0	Х	2018	105	48.39999	-119.519	334	261	236	125.2	115.9	12.17	170
020900035	88101	1	2	7	2019	105	64.76297	-147.31	331	327	314.5	278.4	210	15.21	145

Table 1. EPA AQS Quick Look 2017 – 2019 24-h Average PM2.5 Maximum Concentration \geq 250.5 µg m⁻³ using 88101 Monitoring Sites. Units are µg/m³.

Table 2. EPA AQS Quick Look 2017 – 2019 24-h Average PM_{2.5} Maximum Concentration \geq 250.5 µg m⁻³ using 88502 Monitoring Sites. Units are µg/m³.

AQS ID	Param.	POC	EDT	Duration	Year	Unit	Latitude	Longitude	Meas.	Max	2nd	3rd	4th	Annual	Method Code
300630038	88502	3	2	Х	2017	105	47.17563	-113.476	359	641.9	545.8	503.8	435.4	46.39	731
061050002	88502	1	2	Х	2017	105	40.73475	-122.941	184	498	358.5	241.5	212	22.7	731
410170004	88502	3	0	Х	2017	105	44.2921	-121.556	343	315.1	307.2	300.2	221.3	15.91	771
410290203	88502	3	0	Х	2017	105	42.1941	-122.709	364	305.7	257.8	176.9	140.2	11.76	771
300890007	88502	3	2	Х	2017	105	47.5944	-115.324	184	299.8	225	217.3	215.4	19.78	731
410330011	88502	3	0	Х	2017	105	42.29009	-123.232	351	282.9	246.3	207.5	192.5	12.53	771
410290133	88502	3	0	Х	2017	105	42.31411	-122.879	365	268.4	247.8	198.5	150.3	13.99	771
160090010	88502	3	0	Х	2017	105	47.31658	-116.571	356	256.3	182.9	120.3	118.2	15.58	731
060070008	88502	3	2	Х	2018	105	39.76168	-121.84	360	417	306.2	279.7	246.8	18.07	731
530070007	88502	4	0	Х	2018	105	47.83861	-120.023	355	389	237.4	172.2	171.4	12.25	771
530070011	88502	4	0	Х	2018	105	47.43061	-120.342	330	295.8	215.9	165	153.5	11.97	771
061010003	88502	3	0	Х	2018	105	39.13877	-121.619	359	285	221.6	190.1	188.5	18.27	731
060074001	88502	3	0	Х	2018	105	39.32756	-121.669	358	266.8	260.4	223.9	197.5	17.08	731
060670010	88502	3	0	Х	2018	105	38.56844	-121.493	340	263.3	225.1	152.2	149.4	12.78	731
060773005	88502	3	0	Х	2018	105	37.68264	-121.442	351	257.5	174.7	141.7	114.4	12.26	731
060431001	88502	3	0	Х	2018	105	37.74871	-119.587	274	251	225.8	212.7	185.7	24.06	731
020900035	88502	3	0	Х	2019	105	64.76297	-147.31	331	264.5	264.2	252.5	182	16.78	731

Appendix A

Table A-1. Hourly average PM_{2.5} concentrations (Butte County, California) during the Camp Fire for the November 8 – 22, 2018 period. Units are µg/m³.

Site	AQS ID	POC	Parm.	Date (LST)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Avg.	Max.
Gridley	060074001	3	88502	11/8/2018	9	7	4	5	6	6	6	7	8	10	15	38	27	14	13	22	6	15	22	67	92	184	51	34	27.83	184
Chico	060070008	3	88502	11/8/2018	6	6	4	1	2	6	6	17	4	6	4	3	7	9	5	0	0	1	4	8	10	17	12	12	6.25	17
Paradise	060072002	3	88502	11/8/2018	4	2	2	2	4	3	4	2	210																25.89	210
Chico	060070008	3	88502	11/9/2018	11	17	12	17	14	14	17	17	25	15	14	12	36	129	226	368	701	995	995	995	831	580	347	327	279.79	995
Gridley	060074001	3	88502	11/9/2018	7	10	8	7	9	8	8	7	7		6		25	12	12	7	21	27	26	21	30	38	40	38	17.00	40
Gridley	060074001	3	88502	11/10/2018	52	70	128	128	126	113	115	107	101	112	110	125	102	123	115	90	119	168	181	195	238	236	288	769	162.96	769
Chico	060070008	3	88502	11/10/2018	287	248	237	227	217	199	171	164	148	164	163	149	179	132	100	104	203	596	649	644	399	234	172	138	246.83	649
Gridley	060074001	3	88502	11/11/2018	395	190	73	63	26	14	13	12	15	28	30	14	27	20	9	6	5	7	7	21	71	99	94	96	55.63	395
Chico	060070008	3	88502	11/11/2018	125	116	71	62	59	53	45	27	25	4	5	6	5	3	-1	3	2	-3		1	23	51	57	52	34.39	125
Chico	060070008	3	88502	11/12/2018	45	43	33	30	37	41	49	43	58	40	47	91	99	87	167	210	256	281	273	290	230	205	189	162	125.25	290
Gridley	060074001	3	88502	11/12/2018	103	93	86	86	93	90	83	84	78	54	45	59	40	50	76	117	132	125	126	125	128	112	99	94	90.75	132
Gridley	060074001	3	88502	11/13/2018	93	80	82	111		126	149	141	173	172	235	332	245	189	150	167	179	177	160	156	144	147	168	166	162.70	332
Chico	060070008	3	88502	11/13/2018	184	180	147	141	145	147	140	136	155	159	148	104	85	79	75	72	79	83	82	95	80	91	131	158	120.67	184
Gridley	060074001	3	88502	11/14/2018	171	176	184	173	174	172	153	153	81	42		148	247	341	341	356	352	361	373	420	457	400	374	342	260.48	457
Chico	060070008	3	88502	11/14/2018	155	157	154	141	166	178	192	185	184	190	198	133	169	195	193	188	195	219	236	264	290	301	278	270	201.29	301
Chico	060070008	3	88502	11/15/2018	279	280	296	328	334	333	254	184	146	147	145	149	182	211	418	455	436	403	393	396	410	402	389	379	306.21	455
Gridley	060074001	3	88502	11/15/2018	331	320	318	309	305	308	318	374	278	204	210	206	215	217	245	247	252	262	236	229	242	251	266	262	266.88	374
Chico	060070008	3	88502	11/16/2018	352	342	323	303	280	265	264	255	266	258	368	501	563	585	581	584	569	557	543	510	500	449	408	384	417.08	585
Gridley	060074001	3	88502	11/16/2018	268	279	273	271	248	248	244	236	204	164	137	149	170	152	127	121	106	192	251	157	156	194	203	190	197.50	279
Chico	060070008	3	88502	11/17/2018	347	309	284	259	260	225	199	192	180	182	173	139	151	146	143	141	139	146	167	160	159	159	154	147	190.04	347
Gridley	060074001	3	88502	11/17/2018	197	209	203	198	192	196	213	217	220	208	251	220	196	221	262	243	275	236	244	240	241	231	235	227	223.96	275
Chico	060070008	3	88502	11/18/2018	145	145	142	146	146	139	143	141	141	206	246	249	195	140	110	105	99	100	117	116	124	112	113	115	143.13	249
Gridley	060074001	3	88502	11/18/2018	235	225	223	222	220	216	215	205	188	123	152	119	112	101	68	50	56	56	60	71	74	94	104	102	137.13	235
Gridley	060074001	3	88502	11/19/2018	120	119	116	125	128	117	114	81	69	49	47	38	44	55	48	61	91	97	92	103	96	86	80	80	85.67	128
Chico	060070008	3	88502	11/19/2018	111	87	87	73	66	65	59	51		44	37	20	27	36	32	32	52	70	87	82	71	72	70	72	61.00	111
Chico	060070008	3	88502	11/20/2018	70	71	56	51	46	52	79	42	51	52	60	102	136	142	163	137	143	156	139	144	108	80	79	80	93.29	163
Gridley	060074001	3	88502	11/20/2018	87	80	78	71	83	76	72	74	79	68	95	98	81	71	47	33	32	39	36	36	29	33	28	27	60.54	98
Chico	060070008	3	88502	11/21/2018	81	94	97	96	107	89	78	76	35	31	28	21	18	16	12	11	12	11	8	5	5	6	3	5	39.38	107
Gridley	060074001	3	88502	11/21/2018	24	22	21	20	16	21	25	22	21	19	30	30	28	23	19	17	15	12	12	10	6	5	9	9	18.17	30
Gridley	060074001	3	88502	11/22/2018	21	7	7	6	6	11	11	9	10	10	9	5	4	6	6	6	3	4	6	5	3	3	3	5	6.92	21
Chico	060070008	3	88502	11/22/2018	6	1	1	3	5	7	5	0	3	4	5	8	7	5	1	-3	0	4	-2	-1	2	4	3	1	2.88	8

Source: AQS Database (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw). Data were collated by the EPA as noted on its website on November 24, 2021.

Table A-2. Hourly average PM_{2.5} concentrations (Missoula County, Montana) during the Rice Ridge Fire for the August 4 – September 7, 2017 period. Units are µg/m³.

Site	AQS ID	POC	Parm.	Date (LST)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Avg.	Max.
Seeley	300630038	3	88502	8/4/2017	581	678	689	690	811	893	995	995	973	729	347	68	43	37	35	39	53	56	33	34	25	20	21	22	369.37	995
Seeley	300630038	3	88502	8/5/2017	22	27	26	31	35	49	94	145	31	19	13	17	19	17	25	31	29	19	19	23	17	18	19	26	32.025	145
Seeley	300630038	3	88502	8/6/2017	59	221	350	459	571	666	691	591	185	63	19	13	14	19	35	42	50	50	31	22	20	16	16	40	176.69	691
Seeley	300630038	3	88502	8/7/2017	266	598	725	765	824	831	831	527	397	119	46	14	22	18	14	15	23	29	32	42	48	155	262	321	288.4	831
Seeley	300630038	3	88502	8/8/2017	346	442	509	596	693	661	648	445	242	155	34	23	25	25	22	29	41	30	35	36	32	27	27	35	214.73	693
Seeley	300630038	3	88502	8/9/2017	35	35	43	82	169	262	313	277	146	62	30	24	27	25	33	59	83	50	72	53	31	27	34	158	88.671	313
Seeley	300630038	3	88502	8/10/2017	436	562	664	669	741	823	866	958	759	291	53	26	30	40	53	57	53	51	51	52	27	57	128	92	314.08	958
Seeley	300630038	3	88502	8/11/2017	79	113	208	321	398	510	595	697	658	235	49	28	44		60	57	53	49	47	53	55	86	124	120	201.62	697
Seeley	300630038	3	88502	8/12/2017	115	91	99	67	71	76	99	142	58	32	26	28	35	43	52	31	54	61	59	61	62	87	143	295	78.6	295
Seeley	300630038	3	88502	8/13/2017	197	128	141	212	133	169	182	217	119	78	50	42	39	28	33	23	21	24	26	19	21	24	23	23	81.988	217
Seeley	300630038	3	88502	8/14/2017	20	26	60	104	103	122	103	124	152	72	17	15	16	16	7.8	9	12	12	17	36	44	35	160	222	62.567	222
Seeley	300630038	3	88502	8/15/2017	256	359	379	383	388	480	568	328	253	137	40	42	39	38	31	14	12	11	15	28	35	72	189	354	185.47	568
Seeley	300630038	3	88502	8/16/2017	382	496	606	646	690	670	683	635	422	197	39	21	25	19	23	24	26	27	36	47	48	149	266	487	277.63	690
Seeley	300630038	3	88502	8/17/2017	550	507	433	427	463	499	641	576	440	295	28	14	17	14	14	16	27	27	45	45	44	82	156	270	234.5	641
Seeley	300630038	3	88502	8/18/2017	365	422	459	527	581	616	628	532	316	176	53	42	17	15	19	17	16	34	44	33	29	29	34	33	209.81	628
Seeley	300630038	3	88502	8/19/2017	45	76	179	334	461	529	629	608	401	191	15	8.5	16	15	32	10	18	20	10	10	10	16	21	128	157.53	629
Seeley	300630038	3	88502	8/20/2017	212	324	365	442	500	575	591	532	285	158	37	41	8.5	23	22	15	17	21	24	20	29	40	59	131	186.15	591
Seeley	300630038	3	88502	8/21/2017	268	300	358	459	523	578	646	440	266	226	228	127	29	15	17	15	16	8.7	9.7	12	17	38	103	170	202.88	646
Seeley	300630038	3	88502	8/22/2017	270	321	372	497	579	661	707	637	477	287	150	52	55		94	86	36	28	28	34	45	125	223	328	264.71	707
Seeley	300630038	3	88502	8/23/2017	371	568	717	680	725	721	791	888	778	467	261		76	81	81	49	42	51	49	61	79	209	290	322	363.23	888
Seeley	300630038	3	88502	8/24/2017	402	463	411	404	392	457	513	191	214	200	38	24	27	29	37	54	42	44	39	26	27	50	129	181	183.16	513
Seeley	300630038	3	88502	8/25/2017	296	129	139	249	363	435	518	479	378	159	40	52	45	31	11	25	14	15	10	20	48	150	273	387	177.68	518
Seeley	300630038	3	88502	8/26/2017	566	723	695	691	703	755	777	742	631	465	202	63	68	38	22	9.3	9.8	34	8.5	16	20	99	268	391	333.23	777
Seeley	300630038	3	88502	8/27/2017	472	566	655	656	692	754	865	995	768	511	289	182	106	214	223	157	45	39	21	21	43	121	309	388	378.81	995
Seeley	300630038	3	88502	8/28/2017	461	557	664	692	808	838	861	962	995	694	468	244	64	63	63	34	24	25	28	33	36	80	85	180	373.26	995
Seeley	300630038	3	88502	8/29/2017	260	264	253	262	268	215	211	351	371	484	291	140	119	71	64	42	46	64	53	63	72	97	262	413	197.28	484
Seeley	300630038	3	88502	8/30/2017	521	712	615	756	839	921	995	995	895	694	332	128	98	102	103	85	78	75	128	322	244	246	244	325	435.48	995
Seeley	300630038	3	88502	8/31/2017	278	244	399	511	551	669	824	843	577	440	185	57	29	33	37	53	33	29	41	42	27	32	27	31	249.62	843
Seeley	300630038	3	88502	9/1/2017	50	55	126	461	818	977	995	995	734	357	136	67	42	34	31	32	33	22	19	21	46	74	76	130	263.75	995
Seeley	300630038	3	88502	9/2/2017	281	621	867	995	995	829	686	695	561	483	369	238	91	46	7.8	17	27	29	22	20	27	50	136	401	353.73	995
Seeley	300630038	3	88502	9/3/2017	566	560	486	308	327	416	477	549	395	285	376	457	145	147	116	100	69	62	59	62	86	74	84	294	270.71	566
Seeley	300630038	3	88502	9/4/2017	848	810	356	398	272	235	241	227	222	205	128	128	131	125	107	106	111	124	180	177	155	162	253	368	252.91	848
Seeley	300630038	3	88502	9/5/2017	552	717	817	811	761	847	933	995	995	864	503	290	64	43			90	76	91	95	182	330	461	570	503.89	995

Seeley	300630038	3	88502	9/6/2017	696	710	814	904	937	995	995	995	737	942	737	555	504	443	461	327	378	308	209	398	467	565	641	694	641.98	995
Seeley	300630038	3	88502	9/7/2017	641	653	720	892	995	995	995	995	995	995	966	660	394	281	189	102	72	79	92	156	164	286	369	416	545.84	995

Source: AQS Database (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw). Data were collated by the EPA as noted on its website on May 18, 2021.

Table A-3. Hourly average PM_{2.5} concentrations (Ventura County, California) during the Thomas Fire for the December 5 - 17, 2017 period. Units are µg/m³.

Site	AQS ID	POC	Parm.	Date (LST)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Avg.	Max.
Ojai	061111004	3	88101	12/5/2017													5	6	16	69	280	186	173	135	202	231	237	255	149.58	280
Ojai	061111004	3	88101	12/6/2017	273	355	469	655	688	610	650	494	436	454	445	529	612	499	613	979	833	596	810	697	588	382	361	342	557.08	979
Ojai	061111004	3	88101	12/7/2017	299	269	152	142	148	137	185	267	342	363	391	113	132	92	86	73	33	26	184	216	161	176	217	272	186.50	391
Ojai	061111004	3	88101	12/8/2017	402	495	603	692	649	685	640	566	590	719	782	758	624	601	490	496	471	462	454	364	280	277	302	304	529.42	782
Ojai	061111004	3	88101	12/9/2017	291	324	290	306	285	256	250	249	221	196	209	71	53	37	33	29	48	88	138	171	182	191	194	181	178.88	324
Ojai	061111004	3	88101	12/10/2017	162	126	116	102	96	66	44	40	43	36	15	18	20	14	12	13	14	18	21	23	28	40	33	30	47.08	162
Ojai	061111004	3	88101	12/11/2017	38	42	39	34	33	37	43	70	78	76	91	63	63	40	18	24	27	37	36	42	55	57	70	73	49.42	91
Ojai	061111004	3	88101	12/12/2017	67	66	62	58	57	45	39	40	37		80	93	84	61	193	345	359	353	301	331	402	399	332	229	175.35	402
Ojai	061111004	3	88101	12/13/2017	210	157	116	91	89	80	77	70	89	337	101	104	89	139	143	178	181	165	144	128	107	107	112	106	130.00	337
Ojai	061111004	3	88101	12/14/2017	105	97	83	76	78	70	64	64	76	103	112	80	53	35	31	41	46	35	33	46	58	51	53	54	64.33	112
Ojai	061111004	3	88101	12/15/2017	57	59	71	66	72	72	81	103	119	127	143	194	157	77	52	78	73	78	80	74	68	69	72	73	88.13	194
Ojai	061111004	3	88101	12/16/2017	88	87	91	105	89	100	102	95	98	104	129	158	122	122	109	110	127	121	111	89	77	65	61	59	100.79	158
Ojai	061111004	3	88101	12/17/2017	50	37	40	44	50	52	72	45	32	31	39	29	26	15	15	9	18	29	31	35	32	39	28	21	34.13	72

Source: AQS Database (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw). Data were collated by the EPA as noted on its website on November 24, 2021.