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The August 2004 draft of Chapter 9 of the EPA Particulate Matter Criteria Document 
[EPA9] offers an assessment of the epidemiologic evidence for PM health effects.  
Chapter 8 of the Particulate Matter [PM] Criteria Document, summarizing epidemiologic 
studies of PM and health effects, was presented by EPA in June 2004.  The EPA9 
assessment draws primarily from the Chapter 8 discussion [EPA8] and presents an 
evaluative summary of a diverse array of findings from a large number of studies.  The 
majority of these epidemiologic studies examine concurrent temporal variations of PM 
and mortality or morbidity (mostly PM10), together with a small number of cohort studies 
that use geographic variation rather than temporal variation.  The epidemiologic 
assessment is presented in Section 9.2.2 of EPA9, which is organized into six parts: 
 

1. Strength of reported associations 
2. Robustness of reported association to alternative model specifications 
3. Consistency of findings in multiple studies 
4. Lags between exposure and effects 
5. The nature of concentration-response relationships 
6. Information from so-called natural experiments 
 

My comments are organized to respond to each of the EPA9 epidemiologic assessment 
topics.  Page references in this assessment refer to EPA9, with occasional reference to 
EPA8.  I excluded the final speculative topic dealing with natural experiments because 
these experiments are uncontrolled and unadjusted observational studies, subject to 
strong publication bias.   
 
 
1. Strength of Reported Associations   
 
Estimates of PM mortality effects derived from many time-series studies vary from city 
to city, are often non-significant, and even negative. Estimates rarely exceed a fraction of 
a percent of daily mortality for the range of controllable PM concentrations.  
 
EPA9 appropriately emphasizes the importance of multi-city studies, which it notes do 
not suffer from potential omission of negative findings [9-23, 9-27 bottom] and which 
use a common modeling framework.  However, the multi-city studies are then grouped 
with other studies in Figure 9-4, where a 90-city study appears as a single point, for 
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example.  EPA9 seems to lean heavily on Figure 9-4 in its conclusion that “almost all of 
the associations between PM10 and total mortality are positive and over half are 
statistically significant, including most all of those with more precise estimates”.  
However, it does concede that the effect estimates are small [9-30]. 
 
There is some serious obfuscation in this conclusion drawn from Figure 9-4.  In the first 
place, the 90-city study should not have been represented as a single point since the 
combined PM effect estimate does not refer to any specific location and there are 
unresolved issues regarding the heterogeneity of effect estimates among cities.  The 
apparent precision of the combined effect estimate pertains to an artifactual model 
parameter rather than to a geographic location.  EPA9 does itself point out that inter-city 
differences of PM health effect estimates are to be expected because of differences in 
demographics, climate and PM composition [9-36].  If effect estimates were plotted 
separately for each of the cities in multi-city studies, then one would see inconsistency in 
place of the apparent consistency of Figure 9-4, and a smaller fraction of positive and 
statistically significant findings.  Indeed, the exercise of combining effect estimates from 
the largest multi-city study produces a PM effect that is typically a fraction of PM effect 
estimates in the studies selected for inclusion in Figure 9-4. 
 
In any event, it is disingenuous to speak of the strength of reported associations in 
isolation of model selection issues and exposure errors, which are separately discussed in 
later sections.  Nevertheless, the EPA9 summary conclusion [9-30] is that the 
“epidemiologic evidence is strong for associations between PM10 and PM2.5 and 
mortality” based on a presentation of data that conceals variation and does not anticipate 
the later discussion of model selection and sensitivity. 
 
It is important to understand the sources of inter-city differences among PM effects.  
Without a clear understanding, we cannot rule out the possibility that PM effect estimates 
are model artifacts.  There has been a determined but incomplete effort to relate inter-city 
effect differences to characteristic differences among cities such as demographics, 
climate, etc.  This is called “effect modification” and is a potentially useful approach.    
However, Samet et al. (2000) could not identify any statistically significant PM effect 
modifiers among those that they examined in their 90-city study.  Disparities among PM 
effect estimates could also arise because of model inadequacies, for example through 
incorrect treatment of confounding variables or an incorrect characterization of the 
concentration-response relationship.   
 
 
2. Robustness of Epidemiologic Associations 
 
Because the PM effects are so small compared with the range of daily Poisson mortality 
variation, great care must be taken to assure that estimates are not sensitive to modeling 
choices.  EPA9 begins its assessment of robustness of PM health effect estimates by 
stating “Many epidemiologic studies have also included assessment of whether the 
associations were robust to such factors as model specification” [9-32].  It would have 
been informative for EPA9 to list which of the cited studies (in Figure 9-4 and Figure 9-5 
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for example) did indeed investigate model robustness, and which issues of model 
robustness were examined and not examined.  The use of the term “many” may be 
inappropriate. 
 
Indeed, the EPA9 assessment devotes but a single page to the critical issue of model 
robustness and the role of weather and time trend specification in PM effects modeling.  
Earlier statements by EPA that weather confounding had been adequately addressed 
proved subsequently to be incorrect.  Even those studies that did examine robustness of 
PM effects to weather confounding have done so in a limited way, which, for example, 
does not include weather-PM interactions. 
 
PM variations are substantially correlated with weather variations.  Therefore, special 
care is needed in separating PM effects from the much larger effects of weather.  EPA9 
cites HEI reanalysis studies [HEI 2003] that point to the sensitivity of PM effect 
estimates to the modeling of weather and time trends [9-33].  The HEI re-analysis 
demonstrated that greater flexibility in modeling these confounders could substantially 
reduce the apparent PM effect estimate and alter study conclusions, but there is no 
agreement regarding how much detail should be incorporated into confounder 
adjustments.  So it is astonishing that the EPA9 assessment claims that PM-mortality 
associations are robust to model specification.  The recommended further investigation of 
weather effects [9-34] could even show that remaining PM effects are substituting for 
heretofore unmodeled weather effects. 
 
While EPA9 does acknowledge PM effect sensitivity to alternative modeling of weather, 
it does not adequately address a critical modeling assumption -- additivity of weather and 
PM effects, an assumption that is built into all the PM effect estimates cited by EPA9. 
The additivity assumption is very strong and it presumes that the incremental effects of 
PM would be the same at any temperature and humidity level.  Studies that allow PM 
effects to differ between seasons are a step in the right direction, and such studies 
typically demonstrate that PM effects, corrected for additive weather effects, are 
nevertheless very different in different seasons; see Lumley and Sheppard (2000), Smith 
et al. (2000), and Moolgovkar 2003, for example.  The issue of model robustness, with 
respect to weather adjustment, will not go away until the issue of non-additive effects is 
addressed. 
 
Similar issues arise with regard to confounding of PM effects with those of other co-
pollutants.  EPA9 concludes that PM effect estimates are robust to the inclusion of co-
pollutants [9-35], although this has not been a consistent finding.  Furthermore, in all 
cases where multi-pollutant models have been introduced, the effects of all pollutants are 
taken to be purely additive.  Models that exclude pollutant interactions may not be 
biologically plausible so it becomes difficult to interpret the results of additive multi-
pollutant models. Among other shortcomings of the multi-pollutant is the common 
practice of forcing the same lag structure on all pollutants or not allowing for distributed 
lag effects for the co-pollutants of PM.   
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EPA9 also includes a curious discussion of PM exposure error in its section on model 
robustness [Section 9.2.2.2.3].  Presumably the point being made is that PM effect 
estimates are robust to different surrogate measures of PM exposure, such as ambient 
concentrations at monitoring stations.  This has not been demonstrated.  On the contrary, 
studies that have looked at varying combinations of monitors within the same city have 
found, for example, that PM10 effect estimates are not robust to the choice of monitoring 
sites; see Ito et al. (1995) and Roberts (2003).  The argument for fine particles is made 
only obliquely in EPA9 by reference to a few studies that show reasonable correlation 
between monitoring site concentrations and personal exposure, and even these studies do 
not show a consistent picture; see Clayton et al. (1999).  However, even strong 
correlations are not evidence for robustness of PM effect estimates in situations where 
there is not a proportional relation between exposure and response, as will be discussed 
later. 
 
 
3. Consistency of Epidemiologic Findings  
 
Section 9.2.2.3 of EPA9 is an assessment of consistency of PM effect estimates across 
studies.   This section clearly outlines why one might not expect consistency among 
effect estimates, for example due to differences in pollutant composition and differences 
in population characteristics among cities.  So in the final analysis we are left with 
inconsistent findings, with conjectures to explain the inconsistencies.  A reading of this 
section would leave the impression that consistency of PM effect estimates is not a 
property of the PM epidemiologic literature.  The claim that the larger studies show 
greater consistency fails to recognize the multi-city nature of the larger studies whose 
effect estimates are composites of inconsistent city-specific effect estimates. 
 
Formal statistical tests to detect overall heterogeneity of effect estimates among cities 
have provided conflicting results [9-39], but in any event are not informative because of 
the acknowledged low power of these tests.  The lack of power was clearly pointed out in 
the HEI Special Panel review [8-228]. 
 
The evident inconsistency of PM effect estimates across cities is also clearly seen in the 
multi-city studies that used a common modeling framework.  As noted earlier many city-
specific estimates in the multi-city studies are not significant and even come up negative. 
See for example Figure 8-1, which is reproduced here. Inconsistencies are suggestive of 
model inadequacies, particularly in regard to confounders and effect modifiers.  The fact 
that city-specific effect estimates have been combined into a statistically significant small 
overall effect estimate does not make the consistency issue go away.   
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Figure 8-1. Estimated excess risks for PM mortality (1 day lag) for the 88 largest U.S. 
cities as shown in the revised NMMAPS analysis. 
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There are further inconsistencies in PM effect estimates that surface in studies that 
examine cities with multiple monitors.  Using ambient PM concentration data from 
different monitors within the same city generates differing estimates of PM health effects; 
see Ito et al. (1995) and Roberts (2003).  For example, of the twelve Chicago sites that 
monitored PM10 during 1987-1994, four sites showed consistent significant positive 
association with same day mortality, while the other eight sites showed negligible and 
non-significant mortality associations.   
 
EPA9 acknowledges that spatial variability of PM levels is an unresolved problem [9-38].  
High temporal correlations between monitors within the same city do not imply that PM 
effect estimates will not be monitor-dependent.  For example, if one monitor consistently 
records levels twice as high as another monitor, then the effect estimate using data from 
the first monitor will be half that for the second monitor, since both are being related to 
the same time series of health or mortality data.  Even when PM time series are rescaled 
to a common standard deviation for all monitors, it is still the case that PM mortality 
effect estimates can vary substantially depending on which monitor or monitors are used 
to represent ambient PM; see Roberts (2003).   
 
The patent inconsistencies across cities and studies raise an important regulatory 
question: what reduction in health effects could be expected from a specific regulatory 
standard?  For example, based on results from the multi-city studies, it is reasonable to 
suppose that a reduction of ambient PM will produce no health benefit in some cities.  
Given the inter-city heterogeneity of PM response functions, a combined PM effect 
estimate that applies to no city provides little insight for standard-setting purposes.   
 
 
4. Temporality and the Question of Lagged PM Effects 
 
EPA9 discusses the issue of lag selection for time-series studies where the putative effect 
of a high-PM day could be delayed or spread over a number of subsequent days.  EPA9 
recognizes that maximized lagged effect estimates may be biased [9-39] and 
appropriately suggests that effect estimates should be derived for a series of lags.  
Simulation studies by Lumley and Sheppard (2000) have shown that lag selection bias 
can be of the same order as the estimated PM effect itself.  However, EPA9 did not report 
which of the time series studies that were assessed may indeed be subject to lag selection 
bias.  
 
For example, a common 1-day lag was chosen for all cities in the 90-city study (Dominici 
et al. 2002) so as to mitigate a strong model selection bias that would arise if the choice 
of lag was optimized separately for each city.  However, there is still bias present because 
the 1-day lag was selected for the very reason that it gave PM effect estimates that were 
overall twice as large as the other lags considered [8-261], and it was the only lag choice 
with clear overall statistical significance based on the HEI reanalysis.  
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If PM effects are conjectured to be distributed over several days, then EPA9 claims that 
lag selection for greatest apparent effect would underestimate (rather than overestimate) 
the total multi-day effect.  The circumstances under which this claim is true have not 
been explored and intuition may be tricky; temporal autocorrelation of ambient PM 
introduces issues that are difficult to intuit without systematic exploration.   
 
In distributed-lag models, PM effects extend over several days and separate coefficients 
can be estimated for all lags included in the model, typically 5 to 30 days.  This approach 
has some attractive possibilities and can potentially extract more information regarding 
short-term PM effects.  As a salutary exercise, one should also include non-causal 
negative lags as a check on the credibility of the distributed lag model.  However, 
“negative lag” checks are not discussed by EPA9 and appear to be absent from the cited 
distributed-lag model studies.  
 
Naïve application of distributed lag models will have another serious shortcoming: if one 
is to allow PM effects to extend over several days then one should also allow effects of 
confounding variables, such as weather and co-pollutants, to extend over several days.  
Failure to allow for distributed-lags in confounding variables can lead to an exaggeration 
of the PM effects summed over lags.  None of the cited distributed lag studies allowed for 
distributed lags for weather effects or co-pollutant effects. 
 
Finally, EPA9 raises the issue of how to incorporate long-term trends in PM exposure in 
the cohort studies that span decades.  It correctly concludes that further study is needed to 
evaluate the relation between health outcomes and long-term PM exposure where these 
exposures are changing over time [9-40].  But EPA9 does not say whether we should 
trust the findings of the long-term studies that did not adequately consider this issue.   
 
 
5. The Relation Between Levels of Ambient PM Concentration and Health Effect 
Response Levels  
 
A linear [proportional] concentration-response relationship is key to many of the 
inferences and conclusions that EPA9 draws from the studies that it has reviewed, 
although only a single page in EPA9 is devoted to this central topic.  Concentration-
response linearity is central to many of EPA9’s inferences and conclusions concerning 
PM effects, including discussions of exposure measurement error, confounding 
investigations, heterogeneity investigations, and fundamental modeling of time trends 
and weather.  Indeed, so central is the linearity hypothesis that it is incorporated a priori 
in many of the studies that EPA9 has reviewed.   
  
However, notwithstanding the heavily weighted preference for linear response functions, 
non-linearity will have important consequences for the estimation of PM health effects 
that cannot be summarized by a single coefficient of proportionality. Therefore, direct 
estimates of the concentration-response relation should replace a priori assumptions of 
proportionality, and statistical tests for distinguishing linear and non-linear response 
functions should have adequate power.   
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Instead, EPA9 seems to reverse the logic by putting the burden on disproving the 
proportionality assumption without regard to statistical power.  As an example of this 
reversed logic, EPA9 states that available studies do not provide strong evidence of a 
clear concentration threshold for health effects [9-42].  It is not evident that the strict 
proportionality assumption that EPA9 takes as a null hypothesis is even biologically 
plausible, i.e., the health effect reduction that follows from a fixed decrease in ambient 
PM is assumed to be the same regardless of the current PM level.   
 
Furthermore, the proportionality assumption provides no basis for an acceptable 
regulatory threshold. For example, one could always double the health effect 
improvement by doubling the PM reduction, so there is no obvious regulatory threshold 
based on health effects under this assumption.  Furthermore, the same reduction of effects 
could then be achieved by comparable absolute PM reductions in either a high-PM or a 
low-PM city.   
 
The assumed linear concentration-response relationship also has implications regarding 
the need for separate 24-hour and annual standards.  The proportionality of 
concentration-response implies that a reduction in the annual average will reduce both 
long-term and short-term effects in the same proportion.  A separate 24-hour standard is 
superfluous in the linear concentration-response context. Advocating for a separate 24-
hour standard must imply non-linearity in concentration-response. 
 
When non-proportional effects are allowed in the effect estimation model, then the 
estimated ambient PM-effect relation often departs from proportionality, as can be seen 
for many cities in multi-city studies, such as Daniels et al (2000) and Dominici et al. 
(2002), and in the Los Angeles – Chicago study by Moolgovkar (2003).  In these studies, 
the response is modeled as a low-order parametric spline function of ambient PM.  
Application of the spline response model to different cities yielded a variety of response 
shapes, often with inadequate precision, suggesting that there are statistical difficulties 
distinguishing between linearity and non-linear spline models.  Formal tests for response-
function linearity will have low statistical power against plausible non-linear alternatives, 
not necessarily alternative models with zero-effect thresholds.  Indeed, EPA8 concluded 
that the available information simply does not allow for a clear choice [8-308].   
 
In the multi-city studies described in EPA9, PM concentration-response functions for 
different cities were pooled across cities, as in Schwartz, Zanobetti (2000) and Daniels et 
al. (2000), even though city-to-city differences among PM-effect response functions are 
not obviously in the range of sampling variability.  However, a pooled response function, 
even if it appears linear, is not interpretable unless the same concentration-response 
relationship applies to every city. The putative benefits of ambient PM reductions in any 
particular city cannot be deduced from the pooled response function.  Nevertheless, the 
EPA9 conclusion that accepts monolithic linearity of concentration-response draws 
principally from such pooled response functions [9-42]. 
 

8 



Exposure measurement error will tend to flatten a non-linear concentration-response 
curve [Cakmak et al. 1999] making it harder to distinguish between linear and non-linear 
associations.  Although their simulation study reports that specific threshold 
concentration-response models for a population could be distinguished even in the 
presence of exposure measurement error, we do not know to what extent their specific 
simulation findings can be generalized.  More studies of this kind are needed that 
examine the statistical power to distinguish among competing concentration-response 
models. 
 
EPA9 makes a reasonable point regarding the difficulty of interpreting “population” 
threshold models because it is reasonable to suppose that the response threshold would 
vary across individuals and even across time [9-41].  Better insights into the relationship 
between monitored ambient PM concentrations and anticipated community-level PM 
health effects could be obtained by modeling the relationship between monitored PM and 
individual PM exposure such as Dominici et al. (2000).  However, individual-level 
exposure modeling should go hand-in-hand with the individual-level modeling of 
response to PM in order to build a model for community-level response to ambient PM.  
One can readily construct examples to illustrate that ignoring individual heterogeneity of 
concentration-response to PM can lead to misleading community-level concentration-
response functions.  The relation between individual level response and community level 
response remains unexplored. 
 
Finally, if PM mortality effects were largely confined to a frail population with short 
longevity, referred to as ‘mortality displacement’, then there would be substantial public 
policy and regulatory implications, and this is recognized in EPA8 [8-316].  For example, 
it might be more effective to mitigate PM exposure of frail individuals through nursing 
home and hospital indoor PM requirements, as opposed to regulation of ambient PM.  
However, the EPA9 assessment is mute on this important topic, possibly because studies 
that examine mortality displacement are not in agreement.   
 
 
6. Conclusions 
 
EPA9 presented its assessment of the epidemiologic literature relating monitored PM 
concentrations to health effects using criteria that correspond to the section headings in 
this review.  As detailed above, the available epidemiologic information does not meet 
the criteria for a convincing case for a causative association, nor does this information 
provide a basis for anticipating the effects of PM reductions.  As new information 
becomes available and new modeling approaches are tried, inconsistencies in PM effect 
estimates continue to accumulate.  EPA9 does enumerate important caveats regarding the 
role of modeling choices on PM effect estimates.  However, many of its own caveats are 
put aside in drawing conclusions.  Without a clear understanding of the reasons for 
inconsistent effects estimates, we cannot rule out the possibility that our PM effect 
estimates are model artifacts. Below I briefly summarize a few of the points made in this 
review.  The body of the review should be consulted for details and a fuller discussion.  
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Strength of reported associations.   PM effect coefficients vary substantially 
from city to city and are not consistently positive or consistently statistically 
significant.  The single-city effect estimates for multi-city studies should have 
been examined in assessing reported associations. When estimates from the 90-
city mortality study are averaged, the net effect is very small. 

 
Robustness of epidemiologic associations.  PM effect estimates are sensitive to 
modeling of weather, long-term trends and seasonality, and selection of time lags.  
The way in which weather and co-pollutants are confounded with PM has still not 
been adequately explored because covariation models have not allowed for 
interaction. The recommended further investigation of weather effects [9-34] 
could even show that remaining PM effects are substituting for heretofore 
unmodeled weather effects. 

 
Consistency of epidemiologic findings.  PM effect estimates are not consistent 
from city to city, are not consistent within cities when different monitoring sites 
are compared, and are not consistent from season to season.  Inconsistencies are 
suggestive of model inadequacies, particularly in regard to confounders and effect 
modifiers.  There is no way to anticipate the consequences of PM reduction given 
the diverse array of epidemiologic findings. 
 
Temporality and the question of lags.  Most studies assessed by EPA9 did not 
examine the pattern of effect estimates as a function of time lag, nor did they 
check non-causal negative lags.  The extent of lag selection bias remains 
unresolved.  Statistical properties of PM effect estimates as a function of time lag 
are difficult to anticipate because of temporal autocorrelation of PM time series. 
 
Concentration-response.   The assumption that health effect responses are 
proportional to the ambient PM concentrations is central to many of the reported 
epidemiologic findings and conclusions.   Departures from proportionality can 
have profound consequences both assessing PM health effects and for regulatory 
standards.  There is a diversity of findings regarding the proportionality and the 
power of statistical tests for proportionality is weakly understood.  Pooling of 
response functions across cities to obtain linearity is not statistically justified and 
leads to regulatory dilemmas.  
 
A separate 24-hour standard is superfluous under presumed linearity of 
concentration-response.  The relation between individual-level response and the 
community-level response used in time series studies is not well understood.  And 
finally, some studies suggest that acute PM mortality effects are consistent with 
mortality displacement in frail populations, an important regulatory issue not 
addressed in EPA9.   
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